

Jacobs

Cork Strategic Drainage Study
Appendix 4 Network Modelling Report

321120AW

October 2025

Cork Wastewater Strategy

Project No: 321120AW
 Document Title: Appendix 4 Network Modelling Report
 Document No.:
 Revision:
 Document Status: <Draft>
 Date: July 2025
 Client Name: Uisce Éireann
 Client No: 19/062-139
 Project Manager: Colm Noonan
 Author: Samuel Parker, Julia Anusiak
 File Name:

Jacobs U.K. Limited
 Artola House, 3rd & 4th Floors,
 91 Victoria Street,
 Belfast
 BT14PB
 United Kingdom
 www.jacobs.com

© Copyright 2019 Jacobs U.K. Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Document history and status

Revision	Date	Description	Author	Checked	Reviewed	Approved
0	July 2025	Appendix 4 Network Modelling Report-Draft	SP/JA	AM	PMcD	CN
0	October 2025	Appendix 4 Network Modelling Report-Final	SP/JA	AM	PMcD	CN

Contents

Abbreviations	vii
1. Overview	9
1.1. Scope and Purpose of the Study.....	9
1.2. Study Area	9
1.3. Model Background	10
2. Future Design Horizons.....	12
2.1. Methodology	12
3. Network Optioneering	13
3.1. Methodology	13
3.2. Cork City (including Northern Settlements)	14
3.2.1. Cork City DAP Infrastructure Solutions	15
3.2.2. Course Screening Route Selection & Options.....	17
3.2.3. Revised Northern Orbital Sewer (NOrb) Route and Configuration	18
3.2.3.1.NOrb Option 1A.....	19
3.2.3.2.NOrb Option 1B.....	20
3.2.3.3.Option 2	20
3.2.3.4.Critical Asset Impact	21
3.2.4. Preferred Solution – Cork Northern Orbital Sewer (NOrb).....	23
3.2.4.1.2030 Preferred Solutions.....	24
3.2.4.1.1. Blarney	25
3.2.4.1.2. Carrignavar	26
3.2.4.1.3. Grenagh	26
3.2.4.1.4. Inniscarra.....	27
3.2.4.1.5. Killeens.....	27
3.2.4.1.6. Knockraha	28
3.2.4.1.7. Monard.....	28
3.2.4.1.8. Watergrasshill.....	28
3.2.4.1.9. Cork City.....	29
3.2.4.2.2055 Preferred Solutions.....	31
3.2.4.2.1. Blarney	31
3.2.4.2.2. Grenagh	32
3.2.4.2.3. Monard.....	32
3.2.4.2.4. Watergrasshill.....	32
3.2.4.2.5. Whitechurch	32

3.2.4.2.6. Cork City.....	32
3.2.4.3.2080 Preferred Solutions.....	33
3.2.4.3.1. Blarney	33
3.2.4.3.2. Monard.....	33
3.2.4.3.3. Cork City.....	33
3.3. Cork Lower Harbour (including the Southern Settlements)	33
3.3.1. Coarse Screening Findings - Southern Orbital Sewer (SOrb).....	34
Original Proposed Routes from Coarse Screening.....	34
3.3.2. Southern Orbital Sewer Fine Screening	35
3.3.3. Preferred Solutions for Cork Lower Harbour.....	36
3.3.3.1.2030 Preferred Solution.....	36
3.3.3.1.1. Ballygarvan.....	36
3.3.3.1.2. Ballymore.....	37
3.3.3.1.3. Minane Bridge	37
3.3.3.1.4. Cork Lower Harbour	37
3.3.3.2.2055 Preferred Solution.....	38
3.3.3.2.1. Halfway	38
3.3.3.2.2. Cork Lower Harbour	38
3.3.3.3.2080 Preferred Solution.....	39
3.3.3.3.1. Halfway	39
3.3.3.3.2. Cork Lower Harbour	39
3.4. Ballincollig (incl. Killumney)	39
3.4.1. 2030 Preferred Solution.....	40
3.4.1.1.Killumney.....	40
3.4.1.2.Ballincollig.....	40
3.5. Midleton	41
3.5.1. 2030 Preferred Solution.....	41
3.5.2. 2080 Preferred Solution.....	42
3.6. Carrigtwohill.....	43
3.6.1. 2030 Preferred Solution.....	43
3.6.2. 2055 Preferred Solution.....	43
3.7. Ballincurrig, Lisgoold and Leamlara.....	44
3.7.1. 2030 Preferred Solution.....	44
3.7.2. 2055 Preferred Solution.....	45
3.7.3. 2080 Preferred Solution.....	45

3.8. Berrings.....	45
3.8.1. 2030 Preferred Solution.....	45
3.9. Cloyne and Saleen.....	45
3.9.1. 2030 Preferred Solution.....	46
3.9.2. 2055 Preferred Solution.....	47
3.9.3. 2080 Preferred Solution.....	47
3.10. Coole East	47
3.10.1. 2080 Preferred Solution.....	47
3.11. Courtbrack.....	48
3.11.1. 2030 Preferred Solution.....	48
3.12. Dripsey	48
3.12.1. 2030 Preferred Solution.....	48
3.12.2. 2055 Preferred Solution.....	49
3.13. Matehy	49
3.14. Whitegate/Aghada	49
3.14.1. 2030 Preferred Solution.....	50
3.14.2. 2055 Preferred Solution.....	52
3.14.3. 2080 Preferred Solution.....	52
4. Flood Assessment	53
5. Environmental Risk – Storm Water Overflows Summary.....	61
6. Model Scenarios.....	62
7. Limitations and Recommendations	64
Appendix A – Development Sites	65
1. Cork City Development Details	65
2. Cork Lower Harbour Development Details.....	77
3. Ballincollig Development Details.....	87
4. Carrigtwohill Development Details.....	89
5. Midleton Development Details	92
6. Cork Settlements Development Details	99
Appendix B – Storm Water Overflows Summary.....	124
1. Cork City SWO Details	124
2. Cork Lower Harbour SWO Details.....	170
3. Ballincollig SWO Details.....	178
4. Carrigtwohill SWO Details	182
5. Midleton SWO Details	184

6. Cork Settlements SWO Details	187
Appendix C – Proposed WW Network Preferred Solution Maps	192

Abbreviations

CWS	Cork Wastewater Strategy
ECJ	European Court of Justice
DAP	Drainage Area Plan
EPA	Environmental Protection Agency
EO	Emergency Overflow
AER	Annual Environmental Report
GIS	Geographical Information System
IPPC	Integrated Pollution Prevention and Control
UE	Uisce Eireann
l/h/day	Litres per head per day
MBV	Model Build and Verification
NRV	Non-Return Valve
PS	Pumping Station
PS EO	Pumping Station Emergency Overflow
RTC	Real Time Control
SDS	Strategic Drainage Study
SWO	Storm Water Overflows
TSR	Time Series Rainfall
CCC	Cork County Council
WwTP	Wastewater Treatment Plant

RDZ

Residential Development Zone

UDG

Urban Drainage Group

UWWTR

Urban Wastewater Treatment Regulations

1. Overview

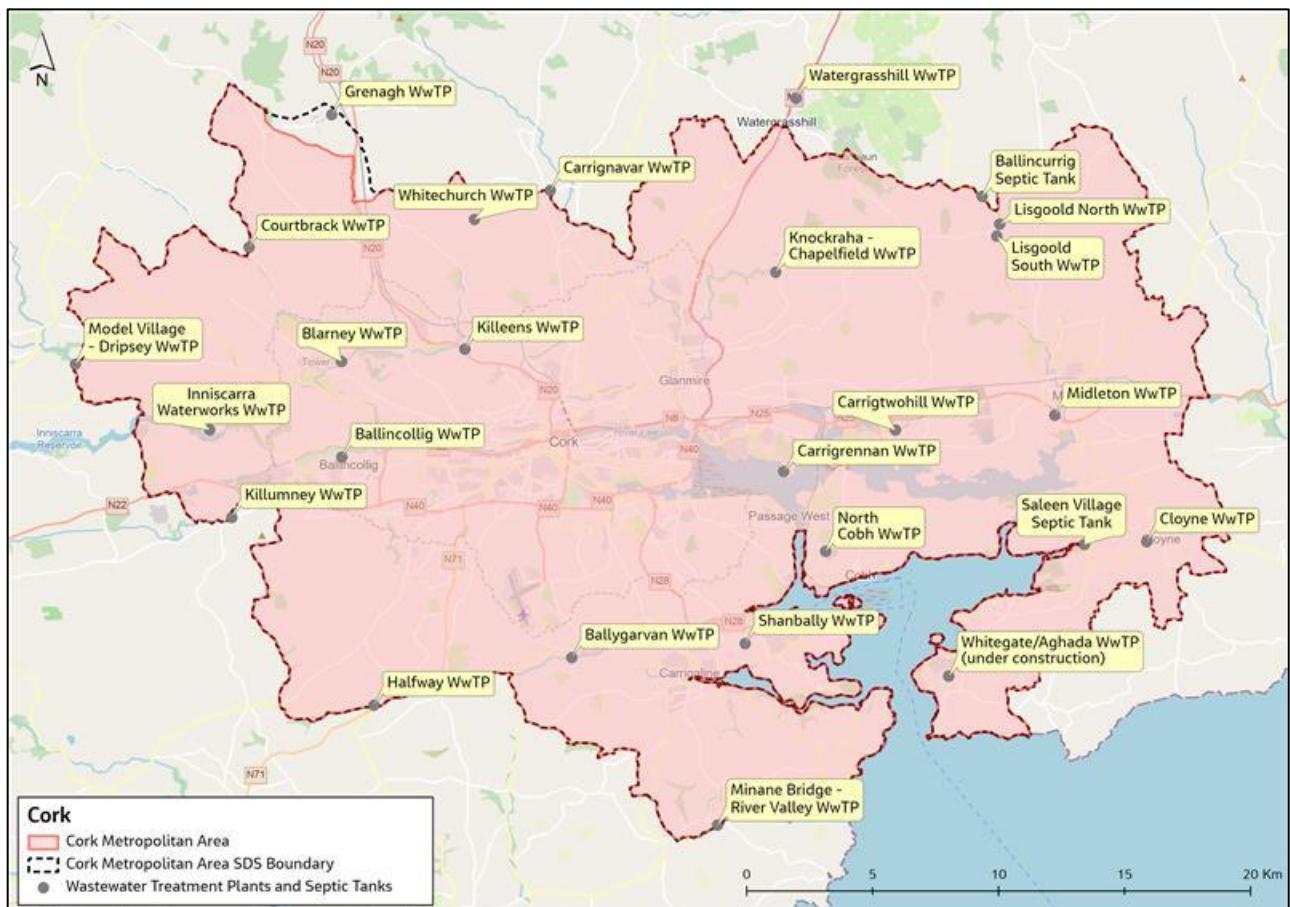
1.1. Scope and Purpose of the Study

Uisce Éireann (Irish Water) commissioned Jacobs Engineering Ireland to undertake a Wastewater Strategy of the Cork Metropolitan Area (CMA). The aim of the Cork Wastewater Strategy (CWS) is to implement a sustainable drainage strategy to support the growth of the CMA. This report outlines the current and future wastewater drainage requirements for the proposed design horizons of 2030, 2055 and 2080.

The CMA is a major regional area that is envisaged to become the fastest-growing region in Ireland. The projected population and associated economic growth will result in a significant increase in Water and Wastewater infrastructure demand, to facilitate this projected growth of the region. There is already a high demand on the existing wastewater infrastructure within the area, which is being challenged to keep pace with growth and an increased demand for new serviced lands. Consequently, this has led to compliance challenges for some of the wastewater treatment plants and sewerage networks in the area. As wastewater treatment capacity requirements increase, the need to accommodate current and future wastewater loads and address associated pressures on the quality of receiving waters becomes more apparent.

The overall objective of the optioneering and solutions development process is to identify and evaluate feasible solutions and determine the optimum strategic drainage and treatment solution(s) for the study area as a whole for horizon years of 2030, 2055 and 2080.

This report will outline how the future design horizons have been created, the current and future horizon assessments of Uisce Éireann assets, the works necessary for all Storm Water Overflows (SWOs) to meet DoEHLG and rUWWTD criteria and limit annual SWO spills from each agglomeration to be no more than 4 % of the annual collected urban wastewater load in 2025 calculated in dry weather conditions, which is equivalent to 2% of the load as per rUWWTD standards.


This report also assesses the impact of upgrading the existing drainage network to mitigate issues such as network surcharge and network flooding, with these incorporated into the final solutions proposed, so that all flows are conveyed to each Wastewater Treatment Plant (WwTP). This will assist with determining final design criteria for any WwTP upgrades as part of the CWS.

Please note: This report has been prepared outside of Strategic Solutions using the best available information gathered from various sources throughout the project. For future reference, any solutions proposed in this report should be reviewed in accordance with the UE detailed design specifications. This includes conducting appropriate workshops and optimising the solutions as necessary, once further surveys or additional information become available during the design stages for each catchment/SWO location.

1.2. Study Area

The Cork Wastewater Strategy includes 26 Uisce Éireann operated WwTPs, ranging in size from less than 100 population equivalent (PE) treatment capacity to greater than 400,000 PE treatment capacity. These WwTPs provide varying levels of treatment such as primary, secondary, tertiary, and nutrient reduction, and discharge

to a range of water bodies. In addition, there are other settlements in the study area that are not currently served.

Figure 1-1. Locations of WwTPs and Septic Tanks within the CMA

These existing WwTPs currently experience a range of issues that include non-compliance with environmental quality standards and exert significant pressure on their receiving waters. It is recognised that the projected growth in population, commercial developments and industry in the Cork Metropolitan Area will further exacerbate wastewater treatment issues and lead to a shortfall in the capacity of the existing and planned WwTPs leading to a deterioration in the quality of the receiving waters.

1.3. Model Background

The model build was undertaken in accordance with the Urban Drainage Group Code of Practice (UDG CoP) for the Hydraulic Modelling of Sewer Systems and Uisce Éireann's Wastewater Network Hydraulic Model Build and Verification Standard – IW-TEC-800-06 (formerly IW-TEC-200-001).

The 2023 baseline model is made up of six network models –

- Four verified models (Cork City, Carrigtwohill, Ballincollig and Midleton)
- One unverified model (Cork Lower Harbour)
- Twenty-four 24 newly built drainage networks which had no existing Uisce Éireann models

Out of the twenty-four drainage areas with no existing network models, nineteen network models have been created using available geographic information system (GIS) records and the Uisce Éireann InfoAsset database. As per the Terms of Reference (ToR), five settlements within the study area had no existing Uisce Éireann sewerage network or treatment facility. For these areas, simplified network models have been built to develop the overall drainage model for the study area in accordance with Uisce Éireann's modelling standards.

Each catchment required varying levels of model build and updates to achieve a robust Type I model i.e. simplified networks with limited details focussing on the main structural and hydraulic components. All network schemes constructed after the development of the existing model were incorporated into the network models using the supplied as constructed and proposed drawings. Any user controls, unless otherwise specified, have been assumed. Above-ground modelling parameters, i.e., WWG (wastewater group), trade profiles, per capita consumption rate and infiltration rates for the verified models remain unchanged. Likewise, there have been no changes to the existing model verification and calibration values and profiles applied. Model simulations were undertaken for all networks to identify and address any instabilities and assess network performance. A list of WwPS's, SWOs and EO's in each catchment can be found in the Baseline Hydraulic Modelling and Network Assessment Report.

2. Future Design Horizons

2.1. Methodology

As part of the Cork Wastewater Strategy (CWS), future development design horizon scenarios for 2030, 2055 and 2080 were created in agreement with Uisce Éireann on residential growth distribution locations across each catchment. The methodology for the development of the future design models was as follows:

- For existing DAP network models, ongoing/recent developments post model verification were included within the design horizon scenarios.
- Scenarios for growth projections for each specific catchment were created, incorporating data from the Population Projections and Land Use Report and the Design Flows and Loads Report for the proposed CWS Study Horizons of 2030, 2050 and 2080.
- Future design model networks were updated with agreed/committed and proposed network upgrades not contained within the existing baseline network model for the 2030, 2055 and 2080 design horizons.
- Per capita consumption (PCC) for Cork City was 140 l/h/d was used as wastewater flow generation contributing to the sewers for all the future population projections, in line with industry standard UDG guidance. This was agreed with Uisce Éireann in advance.
- Infiltration of 40 l/h/d was applied for new developments.
- Design multipliers (WWG and Trade) were set as flat profiles:
 - Domestic (WWG) was set to a multiplier of 2.5.
 - Commercial flows were set to a multiplier of 3 to represent peak flow conditions.
- Commercial flows were calculated at 16% of the total zone flows, and an assumed Trade Profile 3 (Office/Commercial, 8am to 5pm, Weekday only) was applied to all commercial dummy catchments.
- All subcatchments within new developments were modelled to represent a separate system type. An allowance was made for all network models to account for potential misconnections from the surface water to the foul/combined networks, in line with Uisce Éireann's Technical Guidance Note on the Application of Urban Creep Allowances for Future Scenarios in Wastewater Network Modelling.
- Model networks were updated with agreed capital schemes for 2030, 2055 and 2080 design horizons.
- Climate change was applied in accordance with Uisce Éireann's Guidance Note on the Application of Rainfall Data for Wastewater Network Modelling. Climate change was included in the model as a separate set of rainfall events, which were used to assess the Full Development Model for each of the 2030, 2055 and 2080 Design Horizons.
- Model simulations were undertaken for a full set of design runs and durations from 1 to 30 years, and Time Series Rainfall (TSR) was used to assess system capacity with regard to flooding and Storm Water Overflow (SWO) performance for each design horizon scenario.

Refer to appendix A of the report for development details across all catchments for 2030, 2055 and 2080 scenarios.

3. Network Optioneering

3.1. Methodology

In advance of developing proposed network solutions, a strategy meeting was held between Jacobs and Uisce Éireann to review network capacity and assess network risk arising from the proposed future development plans for defined design horizons. Following the review, the development strategic solutions process was undertaken, aimed at providing future network capacity and SWO compliance. The focus was to develop a strategic drainage plan for the Cork Wastewater Strategy. This plan aims to create a resilient future network that complies with Uisce Éireann's future flooding drivers and environmental regulations as set out in the new recast Urban Wastewater Treatment Regulations (UWWTR).

The process adopted for solutions development was as follows:

- Agreement between Jacobs and Uisce Éireann on the overarching strategy for network upgrades based on the capacity risk assessment.
- A preliminary strategic optioneering exercise to evaluate various network scenarios.
- Testing multiple options scenarios for individual catchments in conjunction with the wider Cork Metropolitan Area Strategy.
- Agreement on final strategic recommendations for the wastewater drainage system.

Key outcomes of the detailed Strategic Solutions Development:

- Identifying upgrades to strategic wastewater treatment plants and any new outfalls.
- Identifying existing pumping station upgrade requirements and potential site locations for new network pumping stations.
- Defining strategic network upgrades and proposed rising main route selection for new terminal pumping stations.
- Proposing strategic SWO upgrades or decommissioning to ensure existing and future compliance.
- Evaluating the impact of areas not currently served by Uisce Éireann on the overall drainage system.
- Identifying real-time control opportunities for network optimisation of key assets such as pipelines, tunnels, pumping stations, and wastewater treatment plants.

Please note: This report has been prepared outside of Strategic Solutions using the best available information gathered from various sources throughout the project. For future reference, any solutions proposed in this report should be reviewed in accordance with the UE detailed design specifications. This includes conducting appropriate workshops and optimising the solutions as necessary, once further surveys or additional information become available during the design stages for each catchment/SWO location.

3.2. Cork City (including Northern Settlements)

Network Scheme and Use of Planning Applications in Model Development

Based on existing upgrade documentation and/or council planning materials related to proposed development sites, the following network modifications were implemented. Where essential data for network modelling was unavailable, assumptions were made using engineering judgement.

Cork City:

- Where available, foul dummy development networks associated with future development sites were incorporated from the Cork City Combined Upgrades Infrastructure Model across all three scenarios.
- Large residential development zone networks were modelled using application no. 2442632¹.

Blarney:

- Networks associated with the 2030 development zones were modelled using planning application no. 195413². For the larger zones in the 2055 scenario, dummy development networks were included in the model.
- Blarney/Tower Sewerage Scheme WW Network Upgrade documents³ were used to model network upgrades, namely pipe upsizing throughout the catchment.

Watergrasshill:

- Networks corresponding with the 2030 development zones have been modelled using the following planning application nos. 225878⁴, 196149⁵ which includes Church View WwPS.

Knockraha:

- Networks corresponding with the 2030 development zones have been modelled using the following planning application nos. 144508⁶ and 225216⁷.
- The Chapefield Septic Tank was removed from the model, and the upstream network was redirected to connect with the proposed Knockraha Wastewater Treatment Plant (WwTP). Similarly, the Radharc na Tuaithe Septic Tank was excluded, and a modeled connection to the new WwTP was assumed.
- The main trunk of the Knockraha network was removed from the model, as its previous inclusion was based solely on assumptions to connect the Ard Abhainn development to the WwTP. However, updated development plans indicate a proposed route featuring a wastewater pumping station (WwPS) discharging into the new Glenmore development. Additionally, planning applications for properties along the original trunk route specify private septic tank connections rather than a public foul sewer.

¹ Cork City Council Planning Application, File. No.2442632, <https://planning.corkcity.ie/AppFileRefDetails/2442632/0>

² Cork County Council Planning Application, File. No.195413, <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/195413/0>

³ MCW0959RP0003 and associated documents, Assessment of Blarney Network Infrastructure Requirements (Site R - 02)

⁴ Cork County Council Planning Application, File. No.225878, <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/225878/0>

⁵ Cork County Council Planning Application, File. No.196149, <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/196149/0>

⁶ Cork County Council Planning Application, File. No.144058, <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/144058/0>

⁷ Cork County Council Planning Application, File. No.225216, <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/225216/0>

3.2.1. Cork City DAP Infrastructure Solutions

As part of Stage 4 of the Cork City DAP, an infrastructure solution model was developed, presenting a comprehensive list of interventions across the catchment. These solutions address multiple Storm Water Overflow (SWO) and Wastewater Pumping Station (WwPS) compliance issues, while also mitigating flood risks within the catchment up until 2043 design horizon. Additionally, the model was used to develop a robust solution for non-compliant SWOs under Cork Wastewater Strategy Study for 2030, 2055, and 2080 development scenarios, ensuring flood resilience in Cork City and the northern settlement catchments considering future development impacts.

The following is a list of ancillary upgrades proposed and modelled as part of the Cork City DAP Stage 4 solutions development. These upgrades now form part of the strategic solution across the 2030, 2055, and 2080 design horizons. Please note that this list provides a high-level summary of proposed solutions at network ancillaries. Further associated upgrades, such as network upsizing, installation of new sewers, sewer cleaning, bifurcations, and stormwater system enhancements, are detailed in the Wastewater Infrastructure reports of the Cork City DAP.

WwTP Upgrades:

- **Carrigrennan WwTP:** A new 10,000 m³ storage tank is proposed, with return flow to the network.
- **Ballyvolane to Carrigrennan Network Upgrade:** The design report outlines a new inlet works configuration, with a modelled capacity of 166.5 L/s for the 2055 horizon. The WwTP Flow to Full Treatment (FFT) is increased from 1,930 L/s to 4,000 L/s.

WwPS Upgrades:

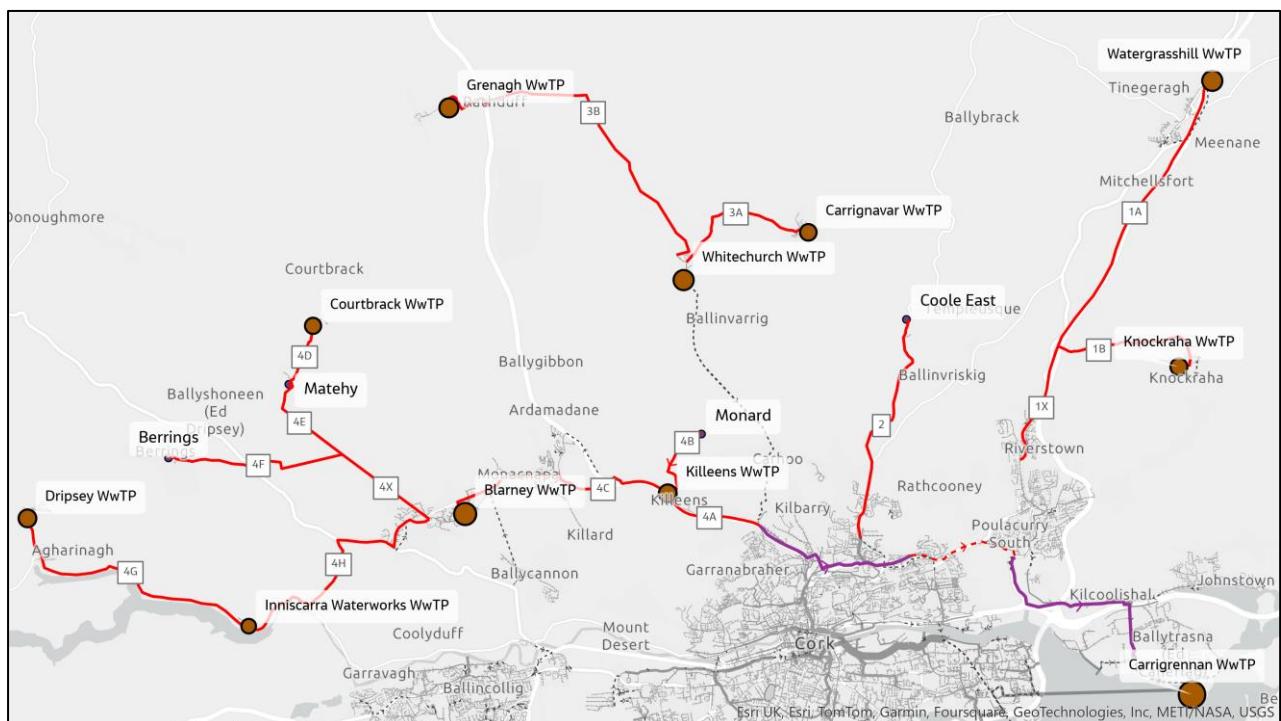
- **Eastgate WwPS:** PFF increased from 333 L/s to 700 L/s; includes screening upgrade, flow diversion, and a new 1,000 m³ storage tank.
- **Glanmire WwPS:** Pump On/Off levels amended; new 3,000 m³ storage tank.
- **Well Road WwPS:** Pass Forward Flow (PFF) increased from 8 l/s to 30 l/s; 300 m³ emergency storage added and the rising main diverted 348 m to Carrigrennan WwTP.
- **Clash Road WwPS:** PFF increased from 6 l/s to 10 l/s.
- **Flaxford Road WwPS:** PFF increased from 504 l/s to 616 l/s and a new 2,100 m³ storage tank.
- **Ballytrasna WwPS:** PFF increased from 30 l/s to 111 l/s; rising main upsized from 150 mm to 350 mm over 322 m.
- **Courtstown WwPS:** PFF increased from 19 l/s to 30 l/s and a new 700 m³ storage tank.
- **Rising Tide WwPS:** Storage increased from 32 m³ to 100 m³.
- **Fitzpatrick's WwPS:** PFF increased from 18 L/s to 25 L/s.
- **Wallingstown WwPS:** PFF increased from 150 L/s to 190 L/s.

- **Ronaynes Court WwPS:** PFF increased from 736 L/s to 1,150 L/s; overflow SW72695406 decommissioned; a new 1,350 mm storm rising main (1,500 L/s) to rehabilitated 10,500 m³ tidal tank for storm storage.
- **Mahon South WwPS:** Rising main discharge diverted to Balinure Header Chamber (BHC) inlet.
- **Mahon North WwPS:** PFF reduced from 170 L/s to 115 L/s.
- **Bessborough WwPS:** PFF increased from 160 L/s to 169 L/s; and new 300 m³ storage tank.
- **City Printer's WwPS:** PFF increased from 6 L/s to 12.5 L/s.
- **Gilabbey Rock WwPS:** New 75 m³ storage tank with overflow to existing outfall.
- **Curraheen WwPS:** PFF increased from 19 L/s to 30 L/s.
- **Garrane Darra WwPS:** PFF increased from 21 L/s to 42 L/s, with inclusion of a new 450 m³ storage tank.
- **Wilton WwPS:** Pump ON levels amended; new 2,050 m³ storage tank.
- **Adrostig WwPS:** New WwPS replacing existing; PFF increased from 14 L/s to 30 L/s, with the storage tank upsized from 250 m³ to 500 m³.
- **Ballyvolane WwPS:** Twin rising main to new WwTP inlet at Carrigraline with additional 405 m³ storage tank.
- **Killeens New WwPS:** New 11 L/s flow transfer WwPS with 325 m³ storage tank.
- **Rochestown Inn WwPS:** Discharge increased from 28 L/s to 40 L/s with a new 500 m³ storage tank.
- **Glencurrag WwPS:** New 18 m³ and 100 m³ storage tanks; new storm pump set.
- **Rochestown WwPS:** New 40 L/s WwPS replacing Rochestown Inn WwPS; new 500 m³ storage tank with overflow and screening.
- **Carmen Lawn WwPS:** Decommissioned with a gravity main flow diversion over 172 m to Rochestown Inn WwPS.
- **Courtwood WwPS:** Decommissioned with a gravity main flow diversion over 540 m to Rochestown Inn WwPS.
- **Greenhills WwPS:** Demolish and rebuild of the existing pumping stations to Uisce Éireann standards, including a new 100 m³ storage tank. Retaining the existing 10 L/s PFF; installation of 80 L/s storm pumps and upgraded SWO with a new screen.
- **Gartan Park WwPS:** Pump ON levels lowered.

SWO Upgrades:

- **Skehard Road SWO:** Weir levels adjusted and existing storage capacity increased.
- **Woodbrook Gurrane Lane SWO:** New 915 m³ storage tank with new weir and 5 L/s return pump.
- **Glendale SWO:** New 400 m³ storage tank with 9 L/s return pump.
- **South Douglas Road SWO:** New 400 m³ storage tank.

- **South Ring Road SWO:** New SWO with 44 m³ storage tank replacing existing; existing overflow sewer converted to foul and diverted; new 2,100 m³ attenuation storage added.
- **Camden Place SWO (SW67725101):** New SWO with three weirs, 350 m³ storage tank, and connection to new storm return WwPS.
- **Rock Cottages SWO:** Upgraded SWO with two weirs, 340 m³ storage tank, and return pump.
- **Popham's Road SWO:** New 220 m³ storage tank.
- **Turner's Cross SWO:** New 670 m³ storage tank.
- **Rosebank SWO:** Rebuilt to include new screen, larger pipes, lower invert, and additional weir discharging to a new 150 m³ storage tank.
- **Orchard Court SWO:** New SWO with weir.
- **Glasheen Bridge SWO:** Reconstructed to accommodate a new screen and larger inlet/outlet pipes.
- **O'Donovan Rossa Road SWO:** Overflow level lowered.
- **Gaol Walk SWO:** Overflow level raised.
- **Flannery's Pub SWO:** Overflow level raised.
- **Belgard Downs SWO:** Overflow level reduced; new 600 mm diversion sewer installed; gullies diverted.
- **Riverbank SWO:** New 1,200 mm diversion sewer, two siphons under Douglas River Culvert, and replacement SWO chamber.
- **Wise's Quay SWO (SW66727002):** New SWO constructed.


Note: This above list is not exhaustive. Refer to Cork Wastewater Infrastructure Solution reports, which was part of the Drainage Area Plan stage 4 conducted between 2022 and 2023.

3.2.2. Course Screening Route Selection & Options

Original Proposed Northern Orbital Sewer (NOrb) Route & Arrangement

The initially proposed route and configuration of the Northern Orbital Sewer (NOrb) is illustrated in **Figure 3-1 Original Northern Orbital Sewer Route**. In this figure:

- **Solid red lines** represent the proposed NOrb rising main,
- **Dashed red lines** indicate the proposed route for the Terminal Wastewater Pumping Station (WwPS),
- **Solid purple lines** indicate proposed new orbital gravity sewer.

Figure 3-1 Original Northern Orbital Sewer Route

Identified Limitations of the Original Route

Unfavourable Gradient in Gravity Sewer - The first section of the proposed gravity sewer begins at an upstream ground level of approximately 20 mAOD, while the downstream end lies at around 60 mAOD. This results in a negative gradient, which would necessitate excavation to depths exceeding **50 m**—rendering the option technically and economically unfeasible.

Environmental and Flooding Risks - The discharge manhole of the Terminal WwPS is located within a river/marshland area, and the proposed gravity sewer route traverses this same terrain. This introduces a significant infiltration risk, which could:

- Increase the frequency and volume of Storm Water Overflow (SWO) events, and
- Exacerbate downstream flooding within the network.

Conclusion and Recommendation

Due to the above constraints, the original NOrb route and configuration have been abandoned in favor of a revised alignment, which has been selected for fine screening. However, should the original route be reconsidered in the future, it is recommended to shift the gravity sewer alignment slightly eastward, where a large undeveloped area with a ground level of approximately 20 mAOD exists. This would offer a more favourable gradient for a gravity main leading to Flaxford Road WwPS.

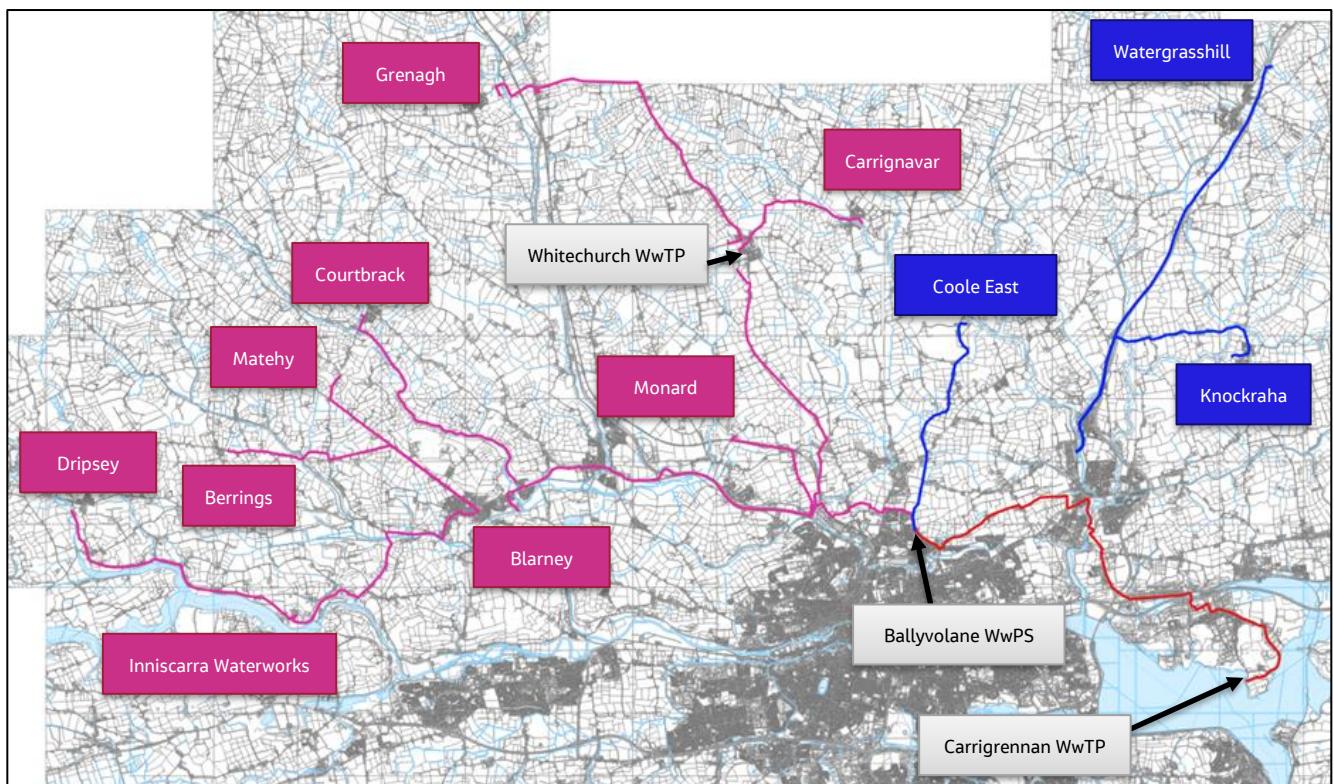
3.2.3. Revised Northern Orbital Sewer (NOrb) Route and Configuration

Several alternative configurations to the originally proposed NOrb route have been evaluated during the strategic options appraisal:

- **Option 1:** NOrb flows are pumped to Carrigennan WwTP via Ballyvolane WwPS.

- **Option 1A:** Assumes the Southern Orbital Sewer (SOrb) does not proceed. This represents the worst-case scenario.
- **Option 1B:** Incorporates the Southern Orbital Sewer (SOrb) as part of the overall strategy.
- **Option 2:** NOrb flows are pumped directly to Ballyvolane WwPS, which then discharges into the Glanmire network.

3.2.3.1. NOrb Option 1A


To eliminate the need for constructing a new Terminal Wastewater Pumping Station (WwPS), it is proposed that rising mains from the settlements west of Cork City be extended directly to Ballyvolane WwPS. This station already has a planned upgrade project for 2050, which includes a twin rising main connection to Carrigrennan WwTP and a new inlet works.

Under this revised arrangement which can be seen in Figure 3-2:

- Dipsey, Inniscarra, Berrings, Matehy, Courtbrack, Blarney, Monard, Grenagh, Carrignavar, and Whitechurch would discharge directly to Ballyvolane WwPS (routes marked in pink).
- Coole East, Watergrasshill, and Knockraha (combined flow of 24 L/s) would pump into the Cork City gravity network (routes marked in blue), discharging at two separate locations.
- Ballyvolane WwPS, as proposed already, pumps flow via rising main (route marked in red) directly to the new Carrigrennan WwTP inlet.

Option 1A is the worst-case scenario and includes all South Cork flows.

Figure 3-2 Revised NOrb Route, Option 1A & 1B

3.2.3.2. NOrb Option 1B

Option 1B is an alternative solution proposed to demonstrate the diversion of a portion of Cork City flows to Cork Lower Harbour WwTP, thereby relieving capacity constraints at the siphon chamber and reducing the required storage volume at the Atlantic Pool Pumping Station. This option, like Option 1A, also includes the northern settlement catchments.

3.2.3.3. Option 2

Option 2, illustrated in Figure 3-3, proposes that flows from the settlements are directed straight to Ballyvolane WwPS. From there, Ballyvolane WwPS would pump the flows to a discharge point within the Glanmire network, specifically in a new development area located south of the Glashaboy WwPS. Flows would then continue via a gravity sewer to Flaxford Road WwPS, where they would be pumped onward to Carrigrennan WwTP.

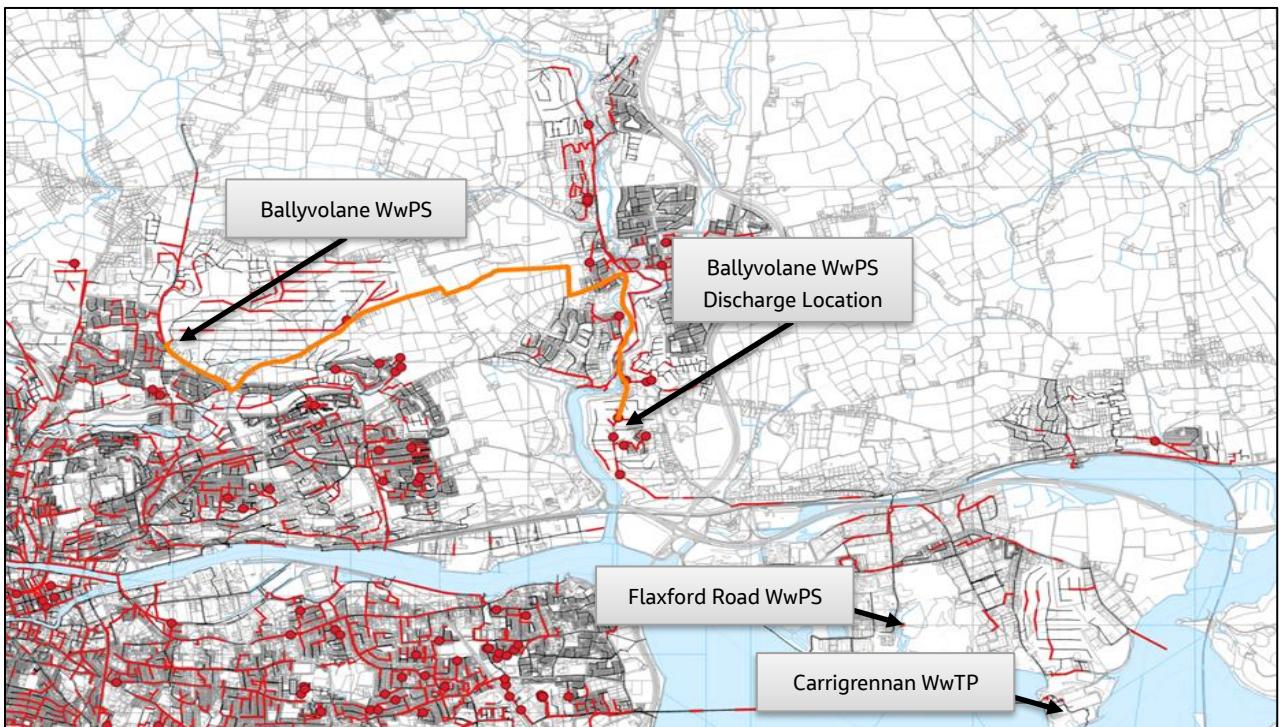


Figure 3-3 Revised NOrb Route, Option 2

This option was not pursued due to the risk of increased flooding and surcharge in the Glanmire and Little Island areas, as well as the significant downstream infrastructure upgrades that would be required. Additional constraints identified include:

- Extensive Network Upgrades: Approximately 3 km of foul sewer network would need upgrading in Glanmire and Little Island. This includes the main trunk sewer between the proposed discharge point near Glashaboy WTP and Evergreen Business Park in Little Island, just upstream of Flaxford Road WwPS.

- Conflict with Existing Plans: A planned upgrade for Ballyvolane WwPS already includes a direct rising main to Carrigrennan WwTP with a new inlet⁸. Discharging into the Glanmire network would conflict with these existing plans.
- Flaxford Road WwPS Capacity: This option would require a major upgrade of Flaxford Road WwPS, increasing its Pump Forward Flow (PFF) from 504 L/s to 841.6 L/s by 2080, an increase of 337.6 L/s.

3.2.3.4. Critical Asset Impact

Options 1A and 1B were examined in greater detail, and a critical asset impact assessment was conducted. The results of this assessment are presented in tables below.

Note on Differences Between Modelled PE and Calculated WwTP Loading

There is a difference between the modelled population equivalent (PE) and the calculated wastewater treatment plant (WwTP) loading. This discrepancy arises due to the differing methodologies used.

Modelled PE Calculation

Modelled PE is derived from the sum of:

P – Population

G – Per capita consumption (PCC)

E – Trade flows

I – Infiltration

Where flow survey data is available, modelled PE is verified using the dry weather flow (DWF) divided by the PCC used during verification.

For non-verified models and future loading standard values are applied:

PCC: 140 L/hd/day, Infiltration: 40 L/hd/day and Trade: Sum of known trade flows and commercial flows calculated within the catchment

WwTP Loading Calculation

WwTP loading is assessed using three different methods, depending on the availability and quality of flow and load data:

Measured Data Approach

Where existing flow and load data are available, we analyse:

DWF (10th percentile)

Average Daily Flow (ADF)

⁸ Uisce Éireann Document No. 10036134-20240711-RYH-FSR-0001-S3-P01, Ballyvolane to Carrigrennan Network Upgrade – Stage 2

Full Flow to Treatment (FFT – 90th percentile)

Future flows are projected by applying measured PCCs to the projected future PE.

Hybrid Approach

Current PE loading is based on measured flow data.

Future horizon PE loading is estimated using theoretical PCCs (e.g., 175 L/PE/day).

Theoretical Approach

Used when measured data is unavailable or unreliable.

Applies theoretical PCCs(175l/PE/day)

Assumes DWF:ADF ratio of 1.25

Carrigrennan WwTP: Hydraulic Design Parameters

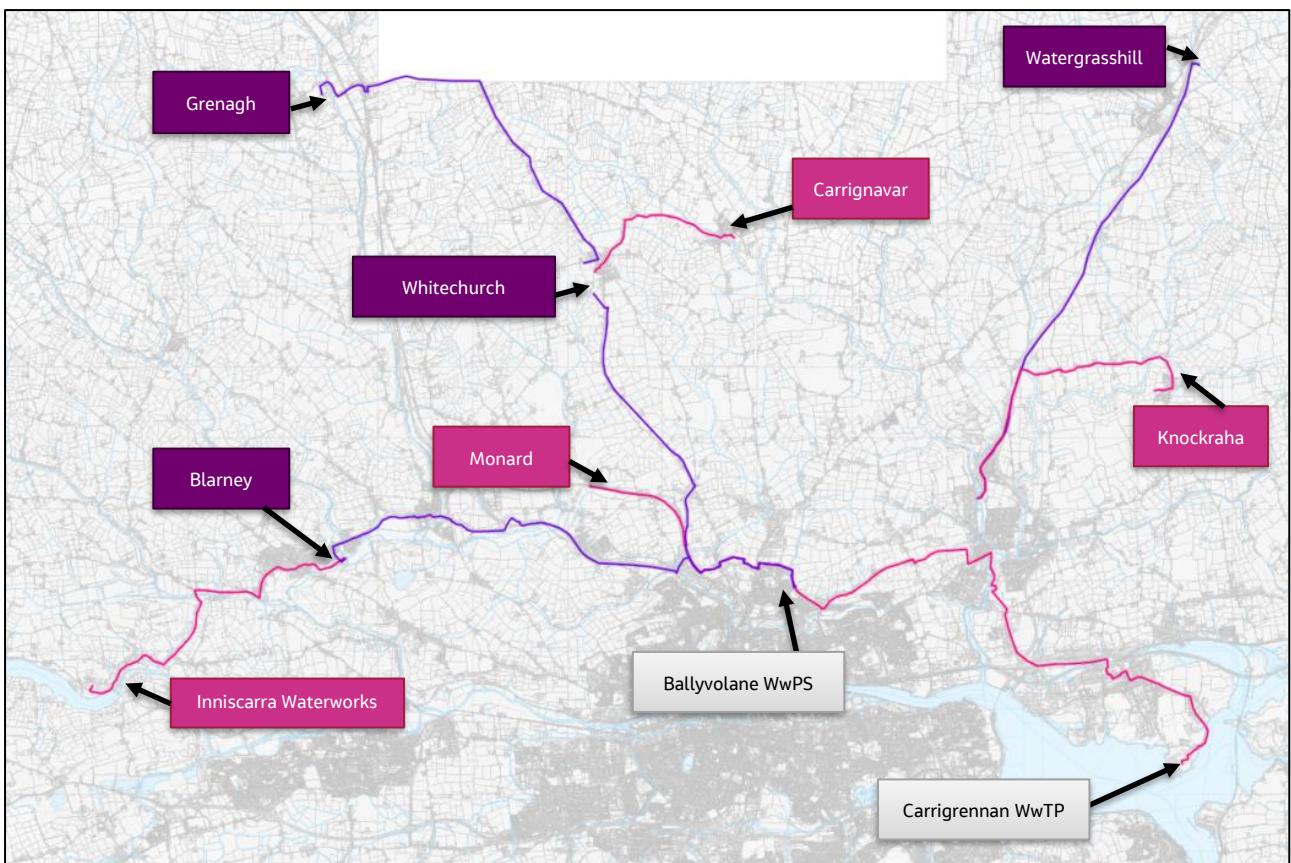
	Baseline	2080	Option 1A	Option 1B
Modelled PE	560,799	856,804 (+296,005)	890,761 (+329,962)	780,883 (+220,084)
FFT	1,930l/s	3,891l/s* (+1,961l/s)	4,964l/s (+3,034l/s)	4,276l/s (+2,346l/s)
Formula A	3,959l/s	5,481l/s (+1,522l/s)	5,659l/s (+1,700l/s)	4,962l/s (+1,004l/s)
3DWF	3,194l/s	4,711l/s (+1,517l/s)	4,889l/s (+1,696l/s)	4,276l/s (+1,082l/s)
DWF	1,376l/s	1,934l/s (+558l/s)	2,003l/s (+626l/s)	1,745l/s (+369l/s)

Ballinure Header Chamber: Hydraulic Design Parameters

	Baseline	2080	Option 1A	Option 1B
Modelled PE	453,566	693,435 (+239,869)	674,910 (+221,344)	565,031 (+111,465)
Formula A	3,401l/s	4,630l/s (+1,229l/s)	4,530l/s (+1,129l/s)	3,824l/s (+432l/s)
3DWF	2,639l/s	3,864l/s (+1,225l/s)	3,764l/s (+1,126l/s)	3,151l/s (+512l/s)
DWF	1,169l/s	1,617l/s (+448l/s)	1,577l/s (+408l/s)	1,320l/s (+151l/s)

Atlantic Pond WwPS: Hydraulic Design Parameters

	Baseline	2080	Option 1A	Option 1B
Modelled PE	356,347	561,281 (+204,934)	542,856 (+186,509)	518,012 (+161,665)


	Baseline	2080	Option 1A	Option 1B
PFF	2,450l/s	2,550l/s (+100l/s)	2,550l/s (+100l/s)	3,450l/s (+1,000l/s)
Formula A	2,752l/s	3,748l/s (+996l/s)	3,648l/s (+896l/s)	3,515l/s (+763l/s)
3DWF	2,094l/s	3,104l/s (+1,010l/s)	3,004l/s (+910l/s)	2,872l/s (+778l/s)
DWF	940l/s	1,285l/s (+345l/s)	1,245l/s (+306l/s)	1,193l/s (+254l/s)

3.2.4. Preferred Solution – Cork Northern Orbital Sewer (NOrb)

The preferred solution for the Cork Northern Orbital Sewer is Option 1A, with further details provided below. Several refinements have been made to Option 1A to establish the final preferred NOrb configuration. The current proposed NOrb rising main layout is illustrated in **Figure 3-4** below.

Key amendments include:

- **Dipsey and Courtbrack** have been excluded from the flow transfer strategy and are now being considered for standalone catchment solutions. Details of the preferred solutions for these catchments are provided in Sections 3.12 and 3.11 of this report.
- **Matehy, Barrings, and Coole East** are also no longer part of the flow transfer. Preferred solutions for these catchments are outlined in Sections 3.13, 3.8, and 3.10 respectively.
- The NOrb flow transfer will be implemented in phases:
 - **2030 (pink routes in Figure 3-4):** Inniscarra (to Blarney), Monard (to Ballyvolane WwPS), Carrignavar (to Whitechurch), and Knockraha (to Cork City network).
 - **2055 (purple routes in Figure 3-4):** Blarney (to Ballyvolane WwPS), Watergrasshill (to Cork City network), and Grenagh (to Whitechurch).
- The Ballyvolane WwPS pump rate is now proposed to increase to 337.6 L/s in 2080 horizon, and the Carrigennan WwTP FFT is proposed to increase to 4,964 L/s in 2080 horizon.

Figure 3-4 Preferred Solution NOrb Routes

3.2.4.1. 2030 Preferred Solutions

Northern Settlements

This section outlines the proposed upgrade solutions for the northern settlements that are planned to transfer flows to Carrigrennan WwTP, either via Ballyvolane WwPS or, in the case of Carrignavar and Grenagh, via Whitechurch WwPS.

The catchments included in this strategy are:

- Blarney (BLA)
- Inniscarra (INN)
- Grenagh (GRE)
- Carrignavar (CRG)
- Knockraha (KNO)
- Monard (MON)
- Watergrasshill (WAT)

3.2.4.1.1. Blarney

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development, the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Ancillary Infrastructure Upgrades

Blarney WwTP

- **Upgrade Ref. BLA/30/A/1:** Installation of a new 10,500 m³ storage tank with Real-Time Control (RTC) return to inlet.
- FFT increased to 77.5 l/s (equivalent to 3DWF).

Gothic Bridge WwPS

- **Upgrade Ref. BLA/30/C/1:** Storage capacity increased from 11.5 m³ to 296 m³.

Kerry Pike WwPS

- **Upgrade Ref. BLA/30/D/1:** Storage capacity increased from 13.1 m³ to 1,005 m³.

Clophoe WwPS

- **Upgrade Ref. BLA/30/E/1:** Storage capacity increased from 15.2 m³ to 201.6 m³.

Network Capacity and Flood Mitigation Measures

To further mitigate flooding and enhance network capacity, the following upgrades are proposed.

- **Upgrade Ref. BLA/30/U/1:** Removal of 70% network infiltration, equivalent to 42 ha.
- **Upgrade Ref. BLA/30/U/2:** Storm separation of hardstanding area covering 0.997 ha.

Foul Sewer Upsizing Works

- Upgrade Ref. BLA/30/U/10 - Upsize 226.7m of Foul sewer from 300mm to 675mm diameter.
- Upgrade Ref. BLA/30/U/11 - Upsize 123.2m of Foul sewer from 300mm to 525mm diameter.
- Upgrade Ref. BLA/30/U/12 - Upsize 864.5m of Foul sewer from 225mm to 300mm diameter.
- Upgrade Ref. BLA/30/U/13 - Upsize 169.6m of Foul sewer from 225mm to 300mm diameter.
- Upgrade Ref. BLA/30/U/14 - Upsize 961.5m of Foul sewer from 225mm to 300mm diameter.
- Upgrade Ref. BLA/30/U/15 - Upsize 116.8m of Foul sewer from 225mm to 525mm diameter.
- Upgrade Ref. BLA/30/U/16 - Upsize 143.1m of Foul sewer from 225mm to 450mm diameter.
- Upgrade Ref. BLA/30/U/17 - Upsize 95.4m of Foul sewer from 150mm to 450mm diameter.
- Upgrade Ref. BLA/30/U/3 - Upsize 388.4m of Foul sewer from 225mm to 300mm diameter.
- Upgrade Ref. BLA/30/U/4 - Upsize 45.4m of Foul sewer from 225mm to 525mm diameter.

- Upgrade Ref. BLA/30/U/5 - Upsize 70.2m of Foul sewer from 420mm to 750mm diameter.
- Upgrade Ref. BLA/30/U/6 - Upsize 112.5m of Foul sewer from 225mm to 450mm diameter.
- Upgrade Ref. BLA/30/U/7 - Upsize 1,875.6m of Foul sewer from 450mm to 750mm diameter.
- Upgrade Ref. BLA/30/U/8 – Upsize 347.7m Foul sewer from 300mm to 450mm diameter.
- Upgrade Ref. BLA/30/U/9 - Upsize 10.9m of Foul sewer from 450mm to 675mm diameter.

3.2.4.1.2. Carrignavar

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Carrignavar WwTP (to become Carrignavar Terminal WwPS)

- **Upgrade Ref. CRG/30/A/1:** Decommissioning of the existing Carrignavar Wastewater Treatment Plant (WwTP).
- **Upgrade Ref. CRG/30/B/1:** Construction of a new Terminal WwPS with 600 m³ storage capacity, designed to pump flows to Whitechurch WwPS via a 3.9 km rising main at a flow rate of 5.7 L/s.

Foul Sewer Upsizing Works

- **Upgrade Ref. CRG/30/U/1** - Upsize 382m of Foul sewer from 150mm to 225mm dia.
- **Upgrade Ref. CRG/30/U/2** - Upsize 482m of Foul sewer from 150mm to 375mm dia.
- **Upgrade Ref. CRG/30/U/3** - Upsize 34m of Foul sewer from 180mm to 375mm dia.
- **Upgrade Ref. CRG/30/U/4** - Upsize 60m of Foul sewer from 150mm to 225mm dia.
- **Upgrade Ref. CRG/30/U/5** - Increase Manhole SW67812703 storage from 0.6m³ to 11.5m³.

3.2.4.1.3. Grenagh

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Grenagh WwTP:

- **Upgrade Ref. GRE/30/A/1:** Upgrade storage capacity at Grenagh WwTP from 90 m³ to 500 m³, future-proofed to accommodate flow transfer in 2055 horizon.

Development WwPS

- **Upgrade Ref. GRE/30/C/1** - Construction of a new WwPS for a dummy development (Grenagh_X-01), with 70 m³ storage capacity, pumping flows via a 0.1 km rising main at a rate of 15 L/s.

To support flood resilience and improve network performance, the following upgrades are also proposed.

- **Upgrade Ref. GRE/30/U/7** - 759m of New 225mm diameter Foul sewer including 11 new manholes.

- **Upgrade Ref. GRE/30/U/1** - Upsize 385m of Foul sewer from 150mm to 225mm diameter.
- **Upgrade Ref. GRE/30/U/2** - Upsize 1,971m of Foul sewer from 150mm to 300mm diameter.
- **Upgrade Ref. GRE/30/U/5** – Upsize 5m of Foul sewer from 275mm to 450mm diameter.
- **Upgrade Ref. GRE/30/U/6** - Upsize 106m of Foul sewer from 300mm to 375mm diameter.

3.2.4.1.4. Inniscarra

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Inniscarra WwTP (to become Inniscarra Terminal WwPS)

- **Upgrade Ref. INN/30/A/1:** Decommissioning of the existing Inniscarra Wastewater Treatment Plant (WwTP).
- **Upgrade Ref. INN/30/B/1:** Construction of a new Terminal WwPS with 220 m³ storage capacity, designed to pump flows to Blarney via a 7.8 km rising main at a flow rate of 1.3 L/s.

Environment Building WwPS

- **Upgrade Ref. INN/30/C/1:** Decommissioning of the existing emergency overflow (EO), including abandonment of the 100 mm diameter foul sewer (SW53727303_PS1.2).
- **Upgrade Ref. INN/30/C/2:** Installation of 35 m³ of new storage.

Foul Sewer Upsizing Works

- **Upgrade Ref. INN/30/U/1** - Increase Manhole SW53727401 storage capacity from 1.5m³ to 8.5m³.

3.2.4.1.5. Killeens

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Killeens WwTP (to becomes Killeens WwPS):

- **Upgrade Ref. KIL/30/A/1** - Decommission WwTP.
- **Upgrade Ref. KIL/30/B/1** - New WwPS with a storage capacity of 525m³, pumping flows to Cork City network via a 2.6km rising main with a flow rate of 11l/s.

Rathpeacon WwPS:

- **Upgrade Ref. KIL/30/C/1** - Increase storage capacity from 6.4 m³ to 155 m³ and adjust pump activation and deactivation levels.

Carrig Rua WwPS:

- **Upgrade Ref. KIL/30/D/1** - Decommission WwPS.

3.2.4.1.6. Knockraha

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Knockraha WwTP (to becomes Knockraha Terminal WwPS):

- **Upgrade Ref. KNO/30/A/1** - Decommission WwTP
- **Upgrade Ref. KNO/30/B/1** - New Terminal WwPS facility with a storage capacity of 45m³, pumping flows to Cork City network via a 7.3km rising main with a flow rate of 3.57l/s.

Glenmore WwPS:

- **Upgrade Ref. KNO/30/C/1** - Increase pump rate from 0.83 L/s to 5 L/s, expand storage capacity from 2 m³ to 25 m³, and revise the pump switch-off level.

3.2.4.1.7. Monard

To facilitate future development, the following upgrade measures have been proposed. Refer to Appendix C for detailed solution drawings.

Monard Terminal WwPS:

- **Upgrade Ref. MON/30/A/1** - New Terminal WwPS with a storage capacity of 6,612m³, pumping flows to Ballyvolane WwPS via a 3.3km rising main with a flow rate of 19.8l/s.

3.2.4.1.8. Watergrasshill

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Watergrasshill WwTP:

- **Upgrade Ref. WAT/30/A/1** - Expand storage capacity at the WwTP from 9.7 m³ to 594 m³ to future-proof for flow transfer planned in 2055.

The Orchard WwPS:

- **Upgrade Ref. WAT/30/C/1** - Upgrade Storage at The Orchard WwPS from 50m³ to 1,450m³.

Church View WwPS:

- **Upgrade Ref. WAT/30/D/1** - Upgrade Storage at Church View WwPS from 5.1m³ to 40.5m³.

Foul Sewer Upsizing Works

- **Upgrade Ref. WAT/30/U/1** - Upsize 192m of Foul sewer from 150mm to 225mm diameter.
- **Upgrade Ref. WAT/30/U/2** - Upsize 31m of Foul sewer from 200mm to 500mm diameter.
- **Upgrade Ref. WAT/30/U/3** - Upsize 95m of Foul sewer from 225mm to 300mm diameter.
- **Upgrade Ref. WAT/30/U/4** - Upsize 3m of Foul sewer from 225mm to 400mm diameter.
- **WAT/30/U/5** - Stormwater separation includes 0.289 ha of road, 1.874 ha of hardstanding, and 0.828 ha of permeable surface area.

- **WAT/30/U/6** - Stormwater separation includes 0.027 ha of road, 0.159 ha of roof and 0.009 ha of hardstanding area.

3.2.4.1.9. Cork City

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Atlantic Pond WwPS:

- **Upgrade Ref. COR/30/H/1** - Increase storm tank storage capacity from 1,353 m³ to 81,353 m³.

Ballyvolane WwPS:

- **Upgrade Ref. COR/30/B/1** - Pump Rate Increase from 47l/s to 64.5l/s & Upgrade Storage from 390m³ to 750m³

Grand Parade WwPS:

- **Upgrade Ref. COR/30/D/1** - Upgrade Wet Well Storage from 63m³ to 251m³.
- **Upgrade Ref. COR/30/U/16** - Reduce tidal infiltration (F0806-Tide) by 50%, equivalent to a flow reduction of 7.5 L/s.
- **Upgrade Ref. COR/30/U/17** - Reduce tidal infiltration (F0805-Tide) by 50%, equivalent to a flow reduction of 8 L/s.

Silversprings SWO:

- **Upgrade Ref. COR/30/F/1** - Increase Hydro Brake Discharge Rate from 85l/s to 260l/s.

Coal Quay WwPS:

- **Upgrade Ref. COR/30/U/1** - Decommission 24.8m of 225m diameter storm sewer between manholes SW67720001 and SW67720005.
- **Upgrade Ref. COR/30/U/2** - Installation of 99.7 m of new 225 mm diameter storm sewer between manholes SW67720001 and SW67720114.
- **Upgrade Ref. COR/30/U/3**: 50% reduction in tidal infiltration from F0802_Tide, equivalent to 7.5 L/s.
- **Upgrade Ref. COR/30/U/4**: 50% reduction in tidal infiltration from F0803_Tide_South, equivalent to 5.5 L/s.
- **Upgrade Ref. COR/30/U/5**: 50% reduction in tidal infiltration from F0798_Tide_South, equivalent to 13 L/s.
- **Upgrade Ref. COR/30/U/6**: 50% reduction in tidal infiltration from D2017_Tide_South, equivalent to 31.3 L/s.
- **Upgrade Ref. COR/30/U/7**: 50% reduction in tidal infiltration from F0807_Tide_South, equivalent to 34 L/s.

The following storm separation measures have also been proposed to support SWO compliance and reduce flood risk at multiple ancillary locations.

- **Upgrade Ref. COR/30/U/13** – Storm Separation Road (0.149ha) & Roof (0.516ha) Removed.

- **Upgrade Ref. COR/30/U/14** – Storm Separation Road (0.139ha), Roof (0.343ha) & Permeable Area (0.685ha) Removed.
- **Upgrade Ref. COR/30/U/15** – Storm Separation Road (0.151ha) Removed.
- **Upgrade Ref. COR/30/U/59** – Storm Separation Road (1.283ha) & Permeable Area (3.779ha) Removed.
- **Upgrade Ref. COR/30/U/18** – Storm Separation Road (0.175ha), Roof (0.050ha) & Permeable Area (0.213ha) Removed.
- **Upgrade Ref. COR/30/U/19** – Storm Separation Roof (0.252ha) Removed.
- **Upgrade Ref. COR/30/U/20** – Storm Separation Roof (0.265ha) Removed.
- **Upgrade Ref. COR/30/U/21** – Storm Separation Roof (0.219ha) Removed.
- **Upgrade Ref. COR/30/U/22** – Storm Separation Roof (0.665ha) Removed.
- **Upgrade Ref. COR/30/U/23** – Storm Separation Roof (1.912ha) Removed.
- **Upgrade Ref. COR/30/U/24** – Storm Separation Roof (0.302ha) Removed.
- **Upgrade Ref. COR/30/U/25** – Storm Separation Roof (0.163ha) Removed.
- **Upgrade Ref. COR/30/U/26** – Storm Separation Roof (0.274ha) Removed.
- **Upgrade Ref. COR/30/U/27** – Storm Separation Roof (0.104ha) Removed.
- **Upgrade Ref. COR/30/U/28** – Storm Separation Roof (0.061ha) Removed.
- **Upgrade Ref. COR/30/U/29** – Storm Separation Roof (0.069ha) Removed.
- **Upgrade Ref. COR/30/U/30** – Storm Separation Roof (0.071ha) Removed.
- **Upgrade Ref. COR/30/U/31** – Storm Separation Roof (0.080ha) Removed.
- **Upgrade Ref. COR/30/U/32** – Storm Separation Roof (0.074ha) Removed.
- **Upgrade Ref. COR/30/U/33** – Storm Separation Roof (0.074ha) Removed.
- **Upgrade Ref. COR/30/U/34** – Storm Separation Roof (0.080ha) Removed.
- **Upgrade Ref. COR/30/U/35** – Storm Separation Roof (0.085ha) Removed.
- **Upgrade Ref. COR/30/U/36** – Storm Separation Roof (0.168ha) Removed.
- **Upgrade Ref. COR/30/U/37** – Storm Separation Roof (0.616ha) & Hard Standing (0.078ha) Removed.
- **Upgrade Ref. COR/30/U/38** – Storm Separation Roof (0.182ha) & Hard Standing (0.023ha) Removed.
- **Upgrade Ref. COR/30/U/39** – Storm Separation Roof (0.234ha) & Hard Standing (0.032ha) Removed.
- **Upgrade Ref. COR/30/U/40** – Storm Separation Roof (0.212ha) & Hard Standing (0.038ha) Removed.
- **Upgrade Ref. COR/30/U/41** – Storm Separation Roof (0.103ha) & Hard Standing (0.009ha) Removed.
- **Upgrade Ref. COR/30/U/42** – Storm Separation Roof (0.061ha) & Hard Standing (0.014ha) Removed.
- **Upgrade Ref. COR/30/U/43** – Storm Separation Roof (0.052ha) & Hard Standing (0.003ha) Removed.

- **Upgrade Ref. COR/30/U/44** – Storm Separation Roof (0.162ha) & Hard Standing (0.002ha) Removed.
- **Upgrade Ref. COR/30/U/45** – Storm Separation Roof (0.088ha) & Hard Standing (0.001ha) Removed.
- **Upgrade Ref. COR/30/U/46** – Storm Separation Roof (0.055ha) & Hard Standing (0.005ha) Removed.
- **Upgrade Ref. COR/30/U/47** – Storm Separation Roof (0.057ha) & Hard Standing (0.017ha) Removed.
- **Upgrade Ref. COR/30/U/48** – Storm Separation Roof (0.089ha) & Hard Standing (0.021ha) Removed.
- **Upgrade Ref. COR/30/U/49** – Storm Separation Permeable Area (3.750ha) Removed.
- **Upgrade Ref. COR/30/U/50** – Storm Separation Permeable Area (0.228ha) Removed.
- **Upgrade Ref. COR/30/U/51** – Storm Separation Permeable Area (0.500ha) Removed.
- **Upgrade Ref. COR/30/U/52** – Storm Separation Permeable Area (3.750ha) Removed.
- **Upgrade Ref. COR/30/U/53** – Storm Separation Permeable Area (7.500ha) Removed.
- **Upgrade Ref. COR/30/U/54** – Storm Separation Permeable Area (2.250ha) Removed.
- **Upgrade Ref. COR/30/U/55** – Storm Separation Permeable Area (1.500ha) Removed.
- **Upgrade Ref. COR/30/U/56** – Storm Separation Permeable Area (7.500ha) Removed.
- **Upgrade Ref. COR/30/U/57** – Storm Separation Permeable Area (10.000ha) Removed.
- **Upgrade Ref. COR/30/U/58** – Storm Separation Permeable Area (10.000ha) Removed.
- **Upgrade Ref. COR/30/U/8** – Storm Separation Road (0.380ha), Roof (0.263ha) & Hard Standing (0.001ha) Removed.
- **Upgrade Ref. COR/30/U/9** – Storm Separation Road (0.215ha) & Roof (0.267ha) Removed.
- **Upgrade Ref. COR/30/U/10** – Storm Separation Road (0.368ha) & Roof (1.172ha) Removed.
- **Upgrade Ref. COR/30/U/11** – Storm Separation Road (0.216ha) & Roof (0.345ha) Removed.
- **Upgrade Ref. COR/30/U/12** – Storm Separation Road (0.501ha) Removed.

3.2.4.2. 2055 Preferred Solutions

Northern Settlements

3.2.4.2.1. Blarney

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Blarney WwTP (becomes Blarney Terminal WwPS):

- **Upgrade Ref. BLA/55/A/1** - Decommission WwTP.
- **Upgrade Ref. BLA/55/B/1** – The new terminal wastewater pumping station (WwPS) will convey flows to Carrigrennan Wastewater Treatment Plant (WwTP) via Ballyvolane WwPS, using a 12.2 km rising main operating at a flow rate of 144 l/s. Storage capacity will be increased from 10,500 m³ to 12,000 m³

3.2.4.2.2. Grenagh

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Grenagh WwTP (becomes Grenagh Terminal WwPS)

- **Upgrade Ref. GRE/55/A/1** - Decommission WwTP.
- **Upgrade Ref. GRE/55/B/1** - New Terminal WwPS facility pumping flows to Whitechurch via a 9.1km rising main with a flow rate of 6.5l/s.

3.2.4.2.3. Monard

To facilitate future development, the following upgrade measures have been proposed. Refer to Appendix C for detailed solution drawings.

Monard Terminal WwPS:

- **Upgrade Ref. MON/55/A/1** - Pump Rate Increase from 19.8l/s to 70.1l/s.

3.2.4.2.4. Watergrasshill

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Watergrasshill WwTP (to becomes Watergrasshill Terminal WwPS)

- **Upgrade Ref. WAT/55/A/1** - Decommission WwTP.
- **Upgrade Ref. WAT/55/B/1** - New Terminal WwPS facility pumping flows to Carrigrennan WwTP via Cork City network via a 10.6km rising main with a flow rate of 18.3l/s.

3.2.4.2.5. Whitechurch

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Whitechurch WwTP (to becomes Whitechurch Terminal WwPS)

- **Upgrade Ref. WHI/55/A/1** - Decommission WwTP.
- **Upgrade Ref. WHI/55/B/1** - Divert and Extend Existing 6.8km & 22.5l/s Rising Main by 0.1km to Ballyvolane WwPS.

3.2.4.2.6. Cork City

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Ballyvolane WwPS:

- **Upgrade Ref. COR/55/B/1** - Pump rate increased from 64.5 l/s to 320.1 l/s, with storage capacity upgraded from 750 m³ to 900 m³

Grand Parade WwPS:

- **Upgrade Ref. COR/55/D/1** - Pump Rate Increase from 62 l/s to 150 l/s.

3.2.4.3. 2080 Preferred Solutions**Northern Settlements****3.2.4.3.1. Blarney**

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development, the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Blarney Terminal WwPS:

- **Upgrade Ref. BLA/80/B/1** - Storage Increase from 12,000m³ to 14,000m³.

3.2.4.3.2. Monard**Monard Terminal WwPS:**

To facilitate future development, the following upgrade measures have been proposed. Refer to Appendix C for detailed solution drawings.

- **Upgrade Ref. MON/80/A/1** - Pump Rate Increase from 70.1 l/s to 87.6 l/s.

3.2.4.3.3. Cork City

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development, the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Ballyvolane WwPS:

- **Upgrade Ref. COR/80/B/1** - Pump rate increased from 320.1 l/s to 337.6 l/s.

3.3. Cork Lower Harbour (including the Southern Settlements)**Network Scheme and Use of Planning Applications in Model Development**

Based on existing upgrade proposals and/or council planning documents related to the proposed development sites, the following network modifications were implemented. Where data required for network modelling was unavailable, assumptions were made using engineering judgement

Cork Lower Harbour:

- Networks associated with the 2030 development zones were modelled using the following planning application numbers: 196901⁹ (which includes the proposed Kilmoney WwPS), 195738¹⁰, 155414¹¹, 156753¹² (which includes the proposed Mill Road WwPS), 196612¹³, 224809¹⁴, 215936¹⁵, 205451¹⁶, 204650¹⁷, 215556¹⁸ and 136168¹⁹. For the larger development zones projected for 2055 and 2080, a dummy network was included to facilitate flow distribution.
- The existing Rose Lawn WwPS configuration within the Janeville Development was updated based on planning application numbers 224809, 215936, 205451, 204650, 215556. This update included the modelling of a new storage tank.
- Previously assumed network details for a section in Monkstown were revised using planning application number 167217²⁰, which includes a connection to the Glenbrook WwPS.
- Assumed network information for a section in Crosshaven was updated based on planning application number 215852²¹.

Minane Bridge

- The networks associated with the 2030 development zones were modelled based on planning application number 204658²².

3.3.1. Coarse Screening Findings - Southern Orbital Sewer (SOrb)

To alleviate future loading on the Carrigrennan Wastewater Treatment Plant (WwTP) and support a more integrated wastewater network, the development of a Southern Orbital Sewer (Sorb) for the Cork Metropolitan Area was evaluated.

Original Proposed Routes from Coarse Screening

A Coarse Screening Workshop took place between Jacobs and Uisce Éireann on 7th January 2025, to discuss the list of proposed options and which to take forward for detailed optioneering. The coarse screening identified four potential scales of options for the Sorb sewer; these are listed below:

- Option 1A: Cork Lower Harbour + Cork City South + Ballincollig + Killumney + Southern Settlements
- Option 1B: Cork Lower Harbour + Southern Settlements + Cork City South only
- Option 2: Cork Lower Harbour + Southern Settlements + Cork City South (New Developments Only), Ballincollig + Killumney
- Option 3: Cork Lower Harbour + Southern Settlements only

⁹ Cork County Council Planning Application, File. No. 196901, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/196901/0>

¹⁰ Cork County Council Planning Application, File. No. 195738, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/195738/0>

¹¹ Cork County Council Planning Application, File. No. 155414, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/155414/0>

¹² Cork County Council Planning Application, File. No. 156753, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/156753/0>

¹³ Cork County Council Planning Application, File. No. 196612, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/196612/0>

¹⁴ Cork County Council Planning Application, File. No. 224809, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/224809/0>

¹⁵ Cork County Council Planning Application, File. No. 215936, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/215936/0>

¹⁶ Cork County Council Planning Application, File. No. 205451, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/205451/0>

¹⁷ Cork County Council Planning Application, File. No. 204650, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/204650/0>

¹⁸ Cork County Council Planning Application, File. No. 215556, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/215556/0>

¹⁹ Cork County Council Planning Application, File. No. 136168, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/136168/0>

²⁰ Cork County Council Planning Application, File. No. 167217, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/167217/0>

²¹ Cork County Council Planning Application, File. No. 215852, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/215852/0>

²² <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/204658/0>

Following coarse screening evaluation, Option 1A was selected for testing. This option represents a worst-case scenario in terms of flows and loads at Cork Lower Harbour WwTP, as it involves transferring the full untreated wastewater load from Ballincollig, Killumney, and the Tramore Valley area of the Cork City catchment to Cork Lower Harbour WwTP. This is illustrated in Figure 3-5 below.

The original scope of Option 1A included:

- Approximately 25 km of gravity sewer (shown in purple),
- Multiple new pumping stations,
- A relocated discharge point for Ronaynes Court WwPS, and
- A new 7 km rising main (shown in dashed red).

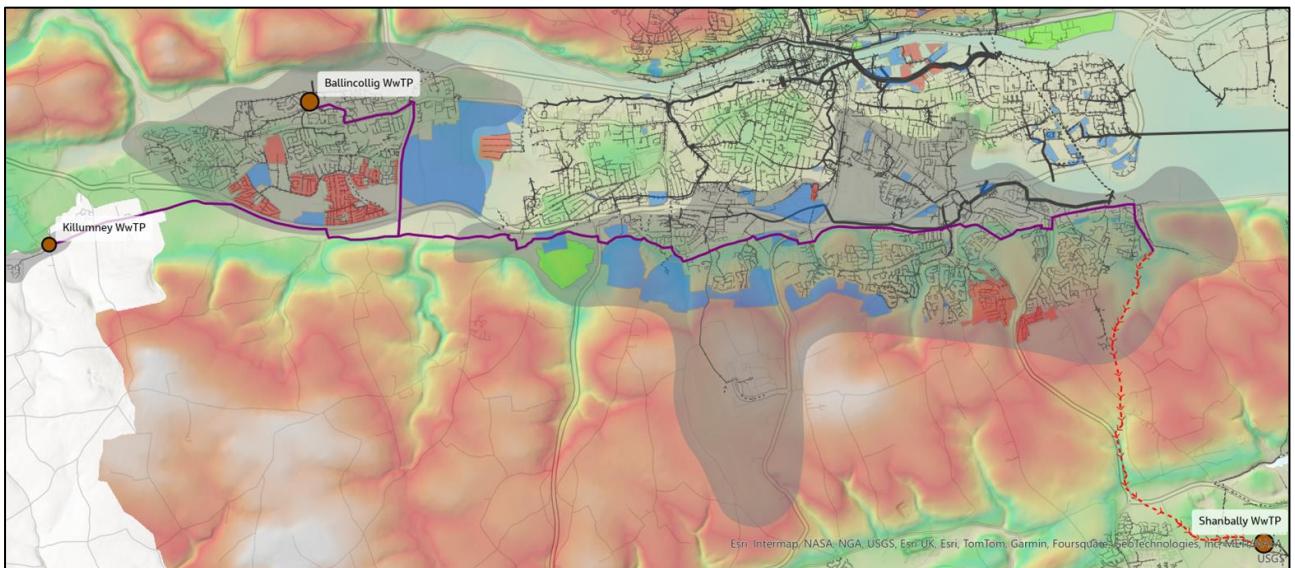


Figure 3-5 Original Proposed SOrb Route

3.3.2. Southern Orbital Sewer Fine Screening

Following a review of the constructability of the SOrb option, several modifications were made to the original proposal to develop the preferred solution:

- **Exclusion of Killumney and Ballincollig Catchments:**

The Killumney and Ballincollig catchments have been excluded from the SOrb option. While Killumney will continue to discharge into the Ballincollig network, all flows reaching Ballincollig WwTP will now be treated at a newly proposed quaternary treatment plant, rather than being transferred to Cork Lower Harbour WwTP.

- **New Flow Transfers Considered:**

Flow transfers from Ballymore, Minane Bridge, Halfway, and Ballygarvan are now included in the transfer option. All except Ballymore involve pumped transfers to Church Road WwPS. Ballymore WwPS is proposed to discharge to the existing North Cobh network, which will then convey flows to Cork Lower Harbour WwTP via a new North Cobh WwPS.

- **Revised SOrb Route Alignment:**

The original SOrb route has been realigned to follow the Cork South Ring Road corridor. This adjustment avoids built-up areas and benefits from more favourable elevations, as illustrated in the adjacent figure (highlighted in green).

- **Optimised Gravity Sewer Length:**

The required length of new gravity sewer has been reduced by 1.8 km. This was achieved by utilising an existing 1800 mm diameter pipe with available capacity, located just before the Douglas Estuary Bridge. The revised SOS route now discharges into this pipe at MH SW71690706, conveying flows to Ronaynes Court WwPS via the existing sewer.

- **Use of Existing Terminal Pumping Station:**

The original proposal included a new terminal pumping station. However, Ronaynes Court WwPS—already serving as a terminal station for the Tramore Valley area—has been repurposed to pump directly to Cork Lower Harbour WwTP. No additional upgrades are required beyond those already planned under Cork City Infrastructure improvements.

Final Preferred Option Selection

Uisce Éireann raised concerns regarding the constructability and operational challenges associated with the proposed gravity pipeline routes and rising main from Ronaynes Court WwPS to Cork Lower Harbour WwTP, particularly due to the potential disruption during construction. As a result, **Option 3** from the coarse screening process was selected as the **final preferred solution** for the Cork Lower Harbour area.

This option focuses solely on the existing Cork Lower Harbour catchment, along with the additional flow transfer catchments noted above. The proposed elements of Option 3 are detailed in the following sections. **Option 1B** remains as an alternative, which includes accepting flows from the Tramore Valley area via Ronaynes Court WwPS.

3.3.3. Preferred Solutions for Cork Lower Harbour

3.3.3.1. 2030 Preferred Solution

Southern Settlements

This section outlines the proposed upgrade solutions for the southern settlements that are planned to transfer flows to Cork Lower Harbour Wastewater Treatment Plant (WwTP) via the Cork Lower Harbour network. The contributing catchments include Halfway (HAL), Ballygarvan (BGV), Minane Bridge (MIN), and Ballymore (BLM).

3.3.3.1.1. Ballygarvan

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

- **Upgrade Ref. BGV/30/A/1** - Decommission WwTP
- **Upgrade Ref. BGV/30/B/1** - New Terminal WwPS facility with a storage capacity of 143m³, pumping flows to Church Road WwPS via an 8.2km rising main with a flow rate of 25l/s.

- **Upgrade Ref. BGV/30/U/1** - Upsize 2,190m of Foul sewer from 225mm to 450mm dia.
- **Upgrade Ref. BGV/30/U/2** - Upsize 576m of Foul sewer from 225mm to 600mm dia.
- **Upgrade Ref. BGV/30/U/3** - 515m of New 225mm dia Foul Sewer.
- **Upgrade Ref. BGV/30/U/4** - 607m of New 225mm dia Foul Sewer.

3.3.3.1.2. Ballymore

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

- **Upgrade Ref. BLM/30/A/1** - New Terminal WwPS facility with a storage capacity of 858m³, pumping flows to North Cobh WwTP via a 6.1km rising main with a flow rate of 15l/s.
- **Upgrade Ref. BLM/30/B/1** - New Dummy Development (BM-RD_ResidentialDemand), a new WwPS with a storage capacity of 35m³, pumping flows via a 0.3km rising main with a flow rate of 10l/s.
- **Upgrade Ref. BLM/30/U/1** - Upsize 1,065m of Foul sewer from 225mm to 300mm dia.
- **Upgrade Ref. BLM/30/U/2** - Upsize 749m of Foul sewer from 225mm to 375mm dia.
- **Upgrade Ref. BLM/30/U/3** - 769m of New 225mm dia Foul sewer.

3.3.3.1.3. Minane Bridge

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

- **Upgrade Ref. MIN/30/A/1** - Decommission WwTP
- **Upgrade Ref. MIN/30/B/1** - New Dummy Development (ME-RD_ResidentialDemand), a new WwPS with a storage capacity of 5.8m³, pumping flows via a 0.09km rising main with a flow rate of 0.8l/s.
- **Upgrade Ref. MIN/30/C/1** - New Terminal WwPS facility with a storage capacity of 7m³, pumping flows to Church Road WwPS via an 8.8km rising main with a flow rate of 12.6/s.
- **Upgrade Ref. MIN/30/D/1** - New Dummy Development (T-01!), a new WwPS with a storage capacity of 1.3m³, pumping flows via a 0.3km rising main with a flow rate of 0.1l/s.
- **Upgrade Ref. MIN/30/U/1** - Upsize 36m of Foul sewer from 225mm to 375mm dia.

3.3.3.1.4. Cork Lower Harbour

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Church Road WwPS:

- **Upgrade Ref. CLH/30/D/1** - Pump Rate Increase from 278l/s to 380l/s.

Cork Road WwPS:

- **Upgrade Ref. CLH/30/F/1** - Upgrade Storage from 11m³ to 16m³.

Dock Cottages WwPS:

- **Upgrade Ref. CLH/30/I/1** - New 220mm dia Flap Valve at overflow outfall.

Old Town Hall WwPS:

- **Upgrade Ref. CLH/30/J/1** - New 275mm diameter flap valve on the overflow outfall.

Town Parks WwPS (Attenuation Tank)

- **Upgrade Ref. CLH/30/E/1** - Upgrade storage from 364m³ to 4,354m³.

3.3.3.2. 2055 Preferred Solution**Southern Settlements****3.3.3.2.1. Halfway**

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Halfway WwTP:

- **Upgrade Ref. HAL/55/A/1** - New 156m³ storage at WwTP, future proofed for flow transfer in 2080.

3.3.3.2.2. Cork Lower Harbour

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

North Cobh WwTP:

- **Upgrade Ref. CLH/30/B/2** – Decommission WwTP.
- **Upgrade Ref. CLH/30/C/1** - A new wastewater pumping station (WwPS) is proposed for North Cobh to replace the existing North Cobh WwTP and also intercept previously untreated flows. The facility will include 402 m³ of storage and will convey flows at a rate of 50 l/s via a 1.8 km rising main to the Estuary Crossing WwPS, with a new connection to the existing outfall.

Crosshaven 1 WwPS:

- **Upgrade Ref. CLH/55/G/1** – Pump Rate Increase from 26l/s to 75l/s.

Crosshaven 2 WwPS (Car Park):

- **Upgrade Ref. CLH/55/H/1** – Pump Rate Increase from 39l/s to 60l/s.

Foul Sewer Upsizing Works

- **Upgrade Ref. CLH/55/U/1** - Upsize 1,324m of Foul sewer from 225mm to 375mm dia.
- **Upgrade Ref. CLH/55/U/2** - Upsize 334m of Foul sewer from 300mm to 375mm dia.
- **Upgrade Ref. CLH/55/U/3** - Upsize 589m of Foul sewer from 375mm to 525mm dia.

- **Upgrade Ref. CLH/55/U/4** - Upsize 56m of Foul sewer from 375mm to 1050mm dia.
- **Upgrade Ref. CLH/55/U/5** - Upsize 14m of Foul sewer from 450mm to 1050mm dia.
- **Upgrade Ref. CLH/55/U/6** - Upsize 12m of Foul sewer from 525mm to 1050mm dia.

3.3.3.3. 2080 Preferred Solution

Southern Settlements

3.3.3.3.1. Halfway

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Halfway WwTP (to becomes Halfway Terminal WwPS):

- **Upgrade Ref. HAL/80/A/1** - Decommission WwTP.
- **Upgrade Ref. HAL/80/B/1** - New Terminal WwPS facility pumping flows to Ballygarvan WwPS via a 8.4km rising main with a flow rate of 6l/s.

Foul Sewer Upsizing Works

- **Upgrade Ref. HAL/80/U/1** - Uppsize 290m of Foul sewer from 150mm to 225mm dia.
- **Upgrade Ref. HAL/80/U/2** - Uppsize 118m of Foul sewer from 225mm to 300mm dia.

3.3.3.3.2. Cork Lower Harbour

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

- **Upgrade Ref. CLH/80/U/1** - Uppsize 142m of Combined sewer from 225mm to 375mm dia.
- **Upgrade Ref. CLH/80/U/2** - Uppsize 64m of Combined sewer from 300mm to 375mm dia.
- **Upgrade Ref. CLH/80/U/7** - Uppsize 1,750m of Combined sewer from 900mm to 1500mm dia.

3.4. Ballincollig (incl. Killumney)

Network Scheme and Use of Planning Applications in Model Development

Based on existing upgrade proposals and/or council planning documents related to the proposed development sites, the following network modifications were implemented. Where data required for network modelling was unavailable, assumptions were made using engineering judgement

Ballincollig:

Foul dummy development networks corresponding with the future development sites were copied in from the Ballincollig Infrastructure Model²³ for both 2030 and 2055.

²³ >Balincollig>Existing Model(s) & Files>Balincollig Infrastructure 20072021>06_Updated Stage 3 Models (07062021)>Balincollig Model Network!>Balincollig Model Network_Current_Model!!

Killumney:

Planning Application no. 206894²⁴ was used to model an extent of a new development foul network for the 2030 scenario onwards. Engineering judgement was applied to connect the proposed and existing network. Dummy development networks only were modelled for the 2055 scenario.

3.4.1. 2030 Preferred Solution**3.4.1.1. Killumney**

It is understood that Uisce Éireann is currently undertaking a flow transfer project from Killumney to Ballincollig as part of the Small Towns and Villages Growth Programme (STVGP) to enhance wastewater infrastructure in smaller urban areas.

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations, particularly those affected by proposed development, the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

- **Upgrade Ref. KLM/30/A/1** – Decommission WwTP.
- **Upgrade Ref. KLM/30/B/1** – New Terminal WwPS facility with a storage capacity of 165m³, pumping flows to Ballincollig via a 4.5km rising main with a flow rate of 25l/s.

Foul Sewer Upsizing Works

- **Upgrade Ref. KLM/30/U/1** - Upsize 1,036m foul sewer from 225mm to 300mm dia.
- **Upgrade Ref. KLM/30/U/2** – Upsize 1,879m of foul sewer from 225mm to 525mm dia.

3.4.1.2. Ballincollig

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development, the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Ballincollig WwTP:

- **Upgrade Ref. BAL/30/A/1** - Upgrade Storm Storage at WwTP from 2,847m³ to 3,156m³

R09 Development WwPS:

- **Upgrade Ref. BAL/30/D/1** - Pump Diversion, i.e., Extend the Rising Main Route from 1.1km to 1.5km, away from Maglin WwPS, downstream to the gravity network in order to alleviate pressure on Maglin WwPS.

Maglin WwPS:

- **Upgrade Ref. BAL/30/B/3** - Upgrade Storage from 18.5m³ to 675m³.

²⁴ Cork County Council Planning Application, File. No. 206894, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/206894/0>

Harrington Street Storage:

- **Upgrade Ref. BAL/30/C/1** - New 250m³ Storage with a Weir and RTC controlled 6l/s return pump. Located at a public car park near Harrington Street in order to mitigate flooding caused by existing hydraulic constraints and proposed new developments.

Foul Sewer Upsizing Works

- **Upgrade Ref. BAL/30/U/1** – Upsize 1,281m of foul sewer from 450mm to 600mm dia.
- **Upgrade Ref. BAL/30/B/2** - 50% Network Infiltration Removal, equivalent to 10ha.

NOTE: The solution proposed for the 2030 scenario has proven effective in achieving compliance with stormwater overflow (SWO) requirements and mitigating flood risk. Therefore, no additional solutions are proposed for the 2055 and 2080 scenarios.

3.5. Midleton**Network Scheme and Use of Planning Applications in Model Development**

Based on existing upgrade proposals and/or council planning documents related to the proposed development sites, the following network modifications were implemented. Where data required for network modelling was unavailable, assumptions were made using engineering judgement.

- Networks corresponding with the 2030 development zones have been modelled using the following planning application nos. 216874²⁵, 225839²⁶, 217265²⁷ & 217264²⁸.
- Midleton North WwPS and Midleton South WwPS were modelled based on feasibility study²⁹ and pipeline plan documentation. Similarly, the foul network upstream of Midleton South WwPS was also developed using the study documents.

3.5.1. 2030 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Riversfield SWO

- **Upgrade Ref. MID/30/B/1** - 2.4m - Decommission Riversfield SWO, i.e., abandon 150mm dia storm sewer between manholes SW88731601 and SW88731630.

Drury's Avenue SWO

- **Upgrade Ref. MID/30/C/1** - 87.8m - Decommission Drury's Avenue SWO, i.e., abandon 300mm dia storm sewer between manholes SW87736104 and SW87736001.

²⁵ Cork County Council Planning Application, File. No. 2161874, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/216874/0>

²⁶ Cork County Council Planning Application, File. No. 225839, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/225839/0>

²⁷ Cork County Council Planning Application, File. No. 217265, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/217265/0>

²⁸ Cork County Council Planning Application, File. No. 217264, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/217264/0>

²⁹ LIHAF Midleton Project, Atkins Feasibility Study Report (5196947DG0094).

Bailick No.1 WwPS

- **Upgrade Ref. MID/30/D/1** – Pump Rate Decrease at Bailick No.1 WwPS from 92l/s to 63l/s.
- **Upgrade Ref. MID/30/D/2** - New 1.8km Bypass Pump Diversion at Bailick No.1 WwPS (to Waterrock WwPS via Midleton South WwPS) with a pump rate of 63l/s.
- **Upgrade Ref. MID/30/D/3** - Upgrade Storage at Bailick No.1 WwPS from 1,800m³ to 5,300m³.

Bailick No.2 WwPS

- **Upgrade Ref. MID/30/E/1** - Upgrade Storage at Bailick No. 2 WwPS from 450m³ to 1,650m³.
- **Upgrade Ref. MID/30/E/2** - Pump Rate Increase at Bailick No.2 WwPS from 21l/s to 40l/s.

Abbeywood WwPS

- **Upgrade Ref. MID/30/F/1** – Pump Rate Increase at Abbeywood WwPS from 1l/s to 7.4l/s.

NOTE: The solution proposed for the 2030 scenario has proven effective in achieving compliance with stormwater overflow (SWO) requirements and mitigating flood risk. Therefore, no additional solutions are proposed for the 2055 scenarios.

3.5.2. 2080 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Dwyer's Road WwPS:

- **Upgrade Ref. MID/80/G/1** - Pump Rate Increase at Dwyer's Road WwPS from 9l/s to 17l/s.
- **Upgrade Ref. MID/80/G/2** - New 350m³ Storage at Dwyer's Road WwPS.

Foul Sewer Upsizing Works

- **Upgrade Ref. MID/80/U/1** – Upsize 294m of foul sewer from 150mm to 225mm dia.
- **Upgrade Ref. MID/80/U/2** – Upsize 420m of foul sewer from 225mm to 300mm dia.
- **Upgrade Ref. MID/80/U/3** – Upsize 88m of foul sewer from 225mm to 450mm dia.
- **Upgrade Ref. MID/80/U/4** – Upsize 7m of foul sewer from 250mm to 450mm dia.
- **Upgrade Ref. MID/80/U/5** – Upsize 55m of foul sewer from 300mm to 750mm dia.
- **Upgrade Ref. MID/80/U/6** – Upsize 477m of foul sewer from 450mm to 600mm dia.
- **Upgrade Ref. MID/80/U/7** – Upsize 396m of foul sewer from 450mm to 750mm dia.
- **Upgrade Ref. MID/80/U/8** – Upsize 393m of foul sewer from 225mm to 300mm dia.

3.6. Carrigtwohill

Network Scheme and Use of Planning Applications in Model Development

Based on existing proposed upgrade documents and/or council planning documents related to proposed development sites, the following network modifications were implemented. Where data required for network modelling was unavailable, assumptions were made using engineering judgement.

- Networks corresponding with the 2030 development zones have been modelled using the following planning application nos. 217130³⁰, 215047³¹ which includes the new Terryland WwPS, 234514³², 225005³³, 175399³⁴, 195707³⁵, 184693³⁶, 144666³⁷

3.6.1. 2030 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Old Cobh Road WwPS

- **Upgrade Ref. CAR/30/B/1** - Pump Rate Increase at Old Cobh Road WwPS from 97l/s to 295l/s.
- **Upgrade Ref. CAR/30/B/3** - Upgrade Storage at Old Cobh Road WwPS from 613m³ to 743m³.
- **Upgrade Ref. CAR/30/B/2** - Spill Pump Rate Increase at Old Cobh Road WwPS from 69l/s to 200l/s.

Foul Sewer Upsizing Works

- **Upgrade Ref. CAR/30/U/1** – Upsize 17m of combined sewer from 350mm to 750mm dia.
- **Upgrade Ref. CAR/30/U/2** – Upsize 292m of combined sewer from 375mm to 600mm dia.

3.6.2. 2055 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Carrigtwohill WwTP

- **Upgrade Ref. CAR/30/A/1** - Extend Existing Outfall to 3.5km at Carrigtwohill WwTP, exact discharge location to be confirmed.

³⁰ Cork County Council Planning Application, File. No. 217130, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/217130/0>

³¹ Cork County Council Planning Application, File. No. 215047, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/215047/0>

³² Cork County Council Planning Application, File. No. 234514, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/234514/0>

³³ Cork County Council Planning Application, File. No. 225005, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/225005/0>

³⁴ Cork County Council Planning Application, File. No. 175399, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/175399/0>

³⁵ Cork County Council Planning Application, File. No. 195707, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/195707/0>

³⁶ Cork County Council Planning Application, File. No. 184693, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/184693/0>

³⁷ Cork County Council Planning Application, File. No. 144666, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/144666/0>

NOTE: The solution proposed for the 2030 and 2055 scenarios have proven effective in achieving compliance with stormwater overflow (SWO) requirements and mitigating flood risk. Therefore, no additional solutions are proposed for the 2080 scenario.

3.7. Ballincurrig, Lisgoold and Leamlara

Network Scheme and Use of Planning Applications in Model Development

Based on existing proposed upgrade documents and/or council planning documents related to proposed development sites, the following network modifications were implemented. Where data required for network modelling was unavailable, assumptions were made using engineering judgement.

- Using the STVGP-WSO WwTP Upgrade Brief³⁸ document, Ballincurrig WwTP was decommissioned and replaced with a Terminal WwPS into Lisgoold North. Lisgoold North WwTP was also decommissioned and connected to a new gravity main from Lisgoold North to Lisgoold South WwTP.
- Lisgoold South WwTP upgrades modelled as per project costing sheets provided by UÉ & the same project brief, as well as old, proposed upgrade drawings³⁹ from 2022.

3.7.1. 2030 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Leamlara Terminal WwPS

- **Upgrade Ref. LEA/30/A/1** - New Terminal WwPS facility with a storage capacity of 418m³, pumping flows to Lisgoold via a 3.9km rising main with a flow rate of 1.5l/s.

Leamlara (LL_RD) Development WwPS

- **Upgrade Ref. LEA/30/B/1** - New WwPS with a storage capacity of 25m³, pumping flows via a 0.2km rising main with a flow rate of 1.4l/s.

Lisgoold South WwTP

- **Upgrade Ref. LIS/30/A/1** - Upgrade Storage at Lisgoold South WwTP from 36m³ to 250m³.

Foul Sewer Upsizing Works

- **Upgrade Ref. LEA/30/U/1** – Upsize 202m of Foul sewer from 225mm to 450mm dia.
- **Upgrade Ref. LIS/30/U/1** – Upsize 110m of Foul sewer from 102mm to 300mm dia.
- **Upgrade Ref. LIS/30/U/2** – Upsize 22m of Foul sewer from 200mm to 300mm dia.
- **Upgrade Ref. LIS/30/U/4** – Upsize 168m of Foul sewer from 300mm to 450mm dia.

³⁸ Ballincurrig & Lisgoold Project Brief WSO 050522

³⁹ OBW Construction, Drawing BISCO206-01

3.7.2. 2055 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Ballincurrig WwPS

- **Upgrade Ref. BLN/55/B/1** - Pump Rate Increase at Ballincurrig WwPS from 0.8l/s to 1.3l/s.

Leamlara Terminal WWPS

- **Upgrade Ref. LEA/55/A/1** - Pump Rate Increase at Leamlara WwPS from 1.5l/s to 2.2l/.

3.7.3. 2080 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Leamlara Terminal WwPS

- **Upgrade Ref. LEA/80/A/1** - Pump Rate Increase at Leamlara WwPS from 2.2l/s to 2.7l/.

3.8. Barrings

Whilst initially considered as a flow transfer catchment for the Northern Orbital Sewer, the results of fine screening found that this would not be the most optimal solution for Barrings. Therefore, without any treatment or overflows within the catchment, the only solutions proposed relate to flooding mitigation.

3.8.1. 2030 Preferred Solution

To resolve and network flooding, the following upgrade solutions have been proposed. Refer to Appendix C for detailed solution drawings.

- **Upgrade Ref. BER/30/U/1** – Upsize 154m of Foul sewer from 150mm to 225mm dia.
- **Upgrade Ref. BER/30/U/2** - 307m of New Foul 225m dia Sewer, incl. 3 new Manholes.

NOTE: The solution proposed for the 2030 scenario has proven effective in achieving compliance with stormwater overflow (SWO) requirements and mitigating flood risk. Therefore, no additional solutions are proposed for the 2055 and 2080 scenarios.

3.9. Cloyne and Saleen

Network Scheme and Use of Planning Applications in Model Development

Based on existing proposed upgrade documents and/or council planning documents related to proposed development sites, the following network modifications were implemented. Where data required for network modelling was unavailable, assumptions were made using engineering judgement.

- Networks corresponding with the 2030 development zones have been modelled using the following planning application nos. 236364⁴⁰ and 197974⁴¹.
- In conjunction with engineering judgement, Cloyne WwTP upgrades were modelled using the FSR⁴² document, based on the recommended 'Option B' solution.

3.9.1. 2030 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Saleen Village Septic Tank (becomes Saleen Terminal WwPS)

- **Upgrade Ref. SAL/30/A/1** - Decommission Saleen Village Septic Tank.
- **Upgrade Ref. SAL/30/B/1** - New Terminal WwPS facility with a storage capacity of 700m³, pumping flows from Saleen to Cloyne via a 4.3km rising main with a flow rate of 4.8l/s.

Cloyne WwTP

- **Upgrade Ref. CLO/30/A/4** - New 225mm Orifice at Cloyne WwTP limiting discharge to 26.3l/s.
- **Upgrade Ref. CLO/30/A/3** - Extend Existing Outfall from Cloyne WwTP to Rostellan, Exact Location Unknown.
- **Upgrade Ref. CLO/30/A/2** - New 659m³ Storage with a new overflow and a 0.03km Return Pump with a pump rate of 18.6l/s.

Saleen (SN-RD) Development WwPS:

- **Upgrade Ref. SAL/30/C/1** - New WwPS with a storage capacity of 13.5m³, pumping flows via a 0.1km rising main with a flow rate of 3.5l/s.

Cloyne (CY-R-02) Development WwPS:

- **Upgrade Ref. CLO/30/D/1** - New WwPS with a storage capacity of 70m³, pumping flows via a 0.1km rising main with a flow rate of 1.7l/s.

Cloyne (CY-RAP-01) Development WwPS:

- **Upgrade Ref. CLO/30/C/1** - New WwPS with a storage capacity of 5m³, pumping flows via a 0.2km rising main with a flow rate of 2l/s.

Cois na Cruma WwPS:

- **Upgrade Ref. CLO/30/B/1** - Upgrade Storage at Cois na Cruma WwPS from 4m³ to 319m³.

Foul Sewer Upsizing Works

- **Upgrade Ref. SAL/30/U/1** - 433m - Upsize Foul sewer from 150mm to 225mm diameter.

⁴⁰ Cork County Council Planning Application, File. No 236364, <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/236364/0>

⁴¹ Cork County Council Planning Application, File. No 197074, <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/197074/0>

⁴² Wastewater Engineering Design Services for Cloyne WwTP, AECOM Feasibility Study Report

- **Upgrade Ref. SAL/30/U/2** - 795m - Upsize Foul sewer from 225mm to 300mm diameter.
- **Upgrade Ref. SAL/30/U/3** - 866m - Upsize Foul sewer from 225mm to 450mm diameter.
- **Upgrade Ref. SAL/30/U/4** - 449m - Upsize Foul sewer from 300mm to 525mm diameter.
- **Upgrade Ref. CLO/30/U/1** - 258m - Upsize Foul sewer from 150mm to 225mm diameter.
- **Upgrade Ref. CLO/30/U/2** - 1562m - Upsize Foul sewer from 150mm to 375mm diameter.
- **Upgrade Ref. CLO/30/U/4** - 70m - Upsize Foul sewer from 225mm to 300mm diameter.

3.9.2. 2055 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Saleen Terminal WwPS

- **Upgrade Ref. SAL/55/B/1** - Pump Rate Increase from 4.8l/s to 5.5l/s & Storage Upgrade from 700m³ to 1,410m³.

3.9.3.2080 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Saleen Terminal WwPS

- **Upgrade Ref. SAL/80/B/1** - Pump Rate Increase from 5.5l/s to 5.9l/s.

3.10. Coole East

Whilst initially considered as a flow transfer catchment for the Northern Orbital Sewer, the results of fine screening found that this would not be the most optimal solution for Coole East. Therefore, without any treatment or overflows within the catchment, the only solutions proposed relate to flooding mitigation.

3.10.1. 2080 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Coole East Septic Tank:

- **Upgrade Ref. COL/80/A/1** - Upgrade Storage at Septic Tank from 30m³ to 360m³.

3.11. Courtbrack

Whilst initially considered as a flow transfer catchment for the Northern Orbital Sewer, the results of fine screening found that this would not be the most optimal solution for Courtbrack. Therefore, the proposed solution focuses on the upgrade of the WwTP and mitigating flooding within the catchment.

3.11.1. 2030 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Courtbrack WwTP:

- **Upgrade Ref. COU/30/A/1** - New 1,380m³ Storage with RTC Operated 1l/s Return.

Courtbrack (CK-RD) Development WwPS:

- **Upgrade Ref. COU/30/B/1** - New WwPS with a storage capacity of 12.5m³, pumping flows via a 0.3km rising main with a flow rate of 1l/s.

Foul Sewer Upsizing Works

- **Upgrade Ref. COU/30/U/1** – Upsize 116m of Foul sewer from 225mm to 375mm dia.
- **Upgrade Ref. COU/30/U/2** – Upsize 91m of Foul sewer from 225mm to 450mm dia.
- **Upgrade Ref. COU/30/U/3** - 68m of New 450mm dia Foul Sewer.
- **Upgrade Ref. COU/30/U/4** - 964m of New 300mm dia Foul Sewer incl. 20 Manholes.
- **Upgrade Ref. COU/30/U/5** - Increase Manhole SW55798501 storage from 2.3m³ to 15m³.
- **Upgrade Ref. COU/30/U/6** - Increase Manhole SW55796501 storage from 2.6m³ to 6.8m³.
- **Upgrade Ref. COU/30/U/7** - Increase Manhole SW55797602 storage from 4.1m³ to 10.6m³.
- **Upgrade Ref. COU/30/U/8** - Increase Manhole SW55798502 storage from 2.9m³ to 7.6m³.

NOTE: The solution proposed for the 2030 scenario has proven effective in achieving compliance with stormwater overflow (SWO) requirements and mitigating flood risk. Therefore, no additional solutions are proposed for the 2055 and 2080 scenarios.

3.12. Dripsey

Whilst initially considered as a flow transfer catchment for the Northern Orbital Sewer, the results of fine screening found that this would not be the most optimal solution for Dripsey. Therefore, the proposed solution focuses on the upgrade of the WwTP, SWO compliance and mitigating flooding within the catchment.

3.12.1. 2030 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Dripsey WwTP:

- **Upgrade Ref. DRI/30/A/2** - Upgrade Storage at Storm Tank from 57m³ to 100m³ with existing pump return of 1l/s and upgraded RTC

Foul Sewer Upsizing Works

- **Upgrade Ref. DRI/30/U/1** – Upsize 256m of Foul sewer from 150mm to 225mm dia
- **Upgrade Ref. DRI/30/U/2** – Upsize 11m of Combined sewer from 225mm to 450mm dia

3.12.2. 2055 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Dripsey WwTP:

- **Upgrade Ref. DRI/55/A/1** - Raise Inlet SWO Screen Level from 58.3m to 59.0m to reduce spills.
- **Upgrade Ref. DRI/55/A/2** - Upgrade Storage at Storm Tank from 100m³ to 168m³

NOTE: The solution proposed for the 2030 scenario has proven effective in achieving compliance with stormwater overflow (SWO) requirements and mitigating flood risk. Therefore, no additional solutions are proposed for the 2055 and 2080 scenarios.

3.13. Matehy

Whilst initially considered as a flow transfer catchment for the Northern Orbital Sewer, the results of fine screening found that this would not be the most optimal solution for Matehy. Therefore, without any treatment or overflows within the catchment, and without significant flooding detriment, no solutions have been proposed.

3.14. Whitegate/Aghada**Network Scheme and Use of Planning Applications in Model Development**

Based on existing proposed upgrade documents and/or council planning documents related to proposed development sites, the following network modifications were implemented. Where data required for network modelling was unavailable, assumptions were made using engineering judgement.

- The Whitegate Aghada Sewerage scheme was modeled using a combination of Foreshore Licence⁴³ documents, Planning Application no. 20646344 and EPA WWDL Application⁴⁵ documents.

⁴³ FS007027 Irish Water Whitegate to Aghada, <https://www.gov.ie/en/department-of-climate-energy-and-the-environment/foreshore-notices/fs007027-irish-water-whitegate-to-aghada/>

⁴⁴ Cork County Council Planning Application, File. No. 206463, <http://planning.corkcoco.ie/ePlan/AppFileRefDetails/206463/0>

⁴⁵ EPA WWDL Application D0423-02, <https://epawebapp.epa.ie/terminalfour/wwda/wwda-view.jsp?regno=D0423-02>

- Networks corresponding with the 2030 development zones have been modelled using the following planning application nos. 21687346 and 22422547
- Whitegate WwPS, Rostellan WwPS, Whitegate WwTP and Lower Aghada WwPS were modelled using 'For Planning' documents for the sewerage scheme, which included site layouts and cross-sections of proposed upgrades.
- Glebe Manor developed foul network modelled using planning application no. __, connected to existing network using engineering judgement. Likewise, Ardnabourkey Estate Septic Tank decommissioned and connected sewer modelled to existing network.

Despite compliance with the Storm Water Overflow (SWO) requirements, significant flooding impacts were observed within the Whitegate/Aghada catchment area—particularly at the Whitegate Wastewater Pumping WwPS, which is the most downstream station responsible for conveying all flows from the catchment. Below are the upgrades proposed for each scenario.

3.14.1. 2030 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Ardnabourkey Septic Tank:

- **Upgrade Ref. WHI/30/C/1** - Decommission Septic Tank.

Whitegate WwTP:

- **Upgrade Ref. WHI/30/A/1** - Reduce Storm Tank Return Rising Main Pump Rate from 20l/s to 5l/s.
- **Upgrade Ref. WHI/30/A/1** – Upgrade WwTP Outfall FV from 300mm to 450mm diameter.

Whitegate WwPS:

- **Upgrade Ref. WHI/30/B/1** - Reduce Rising Main Pump Rate from 17l/s to 13.1l/s & Upgrade Storm Tank Storage from 255m³ to 1,400m³.
- **Upgrade Ref. WHI/30/B/2** - New 1,200m³ Inlet Storage.
- **Upgrade Ref. WHI/30/B/3** - Upgrade FV on outfall from 200mm to 450mm diameter.
- **Upgrade Ref. WHI/30/B/3** - Upgrade Wet well Storage from 12.8m³ to 20m³.

Lower Aghada WwPS:

- **Upgrade Ref. WHI/30/C/1** – Upgrade Inlet Storage from 26m³ to 169m³ & Upgrade Inlet Sluice.
- **Upgrade Ref. WHI/30/C/2** – Upgrade Wet well Storage from 8.7m³ to 20.3m³.

Rostellan WwPS:

- **Upgrade Ref. WHI/30/D/1** - Upgrade Wet well Storage from 8.4m³ to 42m³.
- **Upgrade Ref. WHI/30/D/2** - Upgrade Storm Tank Storage from 55.4m³ to 154m³.

⁴⁶ Cork County Council Planning Application, File. No. 216873, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/216873/0>

⁴⁷ Cork County Council Planning Application, File. No. 224225, <https://planning.corkcoco.ie/ePlan/AppFileRefDetails/224225/0>

Foul Sewer Upsizing Works

- **Upgrade Ref. WHI/30/U/1** – Upsize 335.4m of Foul Sewer from 150mm to 225mm diameter
- **Upgrade Ref. WHI/30/U/10** – Upsize 22.7m of Foul Sewer from 160mm to 900mm diameter
- **Upgrade Ref. WHI/30/U/11** – Upsize 18.7m of Foul Sewer from 160mm to 300mm diameter
- **Upgrade Ref. WHI/30/U/12** – Upsize 9.3m of Foul Sewer from 160mm to 225mm diameter
- **Upgrade Ref. WHI/30/U/13** – 56.8m – Upsize Foul Sewer from 225mm to 750mm diameter
- **Upgrade Ref. WHI/30/U/14** – Upsize 1.9m of Foul Sewer from 150mm to 450mm diameter
- **Upgrade Ref. WHI/30/U/15** – Upsize 115.1m of Foul Sewer from 150mm to 375mm diameter
- **Upgrade Ref. WHI/30/U/16** – Increase SW85655001 Manhole Storage from 0.6m³ to 22.4m³
- **Upgrade Ref. WHI/30/U/17** – Upsize 134.2m of Foul Sewer from 150mm to 375mm diameter
- **Upgrade Ref. WHI/30/U/18** – Upsize 420.6m of Foul Sewer from 150mm to 300mm diameter
- **Upgrade Ref. WHI/30/U/19** – Upsize 246.6m of Foul Sewer from 150mm to 200mm diameter
- **Upgrade Ref. WHI/30/U/2** – Upsize 39.8m of Foul Sewer from 225mm to 450mm diameter
- **Upgrade Ref. WHI/30/U/20** – Upsize 182.4m of Foul Sewer from 225mm to 300mm diameter
- **Upgrade Ref. WHI/30/U/21** – Upsize 1.5m of Foul Sewer from 250mm to 900mm diameter
- **Upgrade Ref. WHI/30/U/22** – Upsize 2.8m of Foul Sewer from 300mm to 900mm diameter
- **Upgrade Ref. WHI/30/U/23** – Upsize 33.7m of Foul Sewer from 315mm to 450mm diameter
- **Upgrade Ref. WHI/30/U/24** – Upsize 7.7m of Foul Sewer from 350mm to 800mm diameter
- **Upgrade Ref. WHI/30/U/25** – Upsize 2.4m of Storm Sewer from 200mm to 450mm diameter
- **Upgrade Ref. WHI/30/U/26** – Upsize 1.8m of Foul Sewer from 200mm to 450mm diameter
- **Upgrade Ref. WHI/30/U/27** – Upsize 439.4m of Foul Sewer from 225mm to 600mm diameter
- **Upgrade Ref. WHI/30/U/28** – Upsize 638.2m of Foul Sewer from 225mm to 600mm diameter
- **Upgrade Ref. WHI/30/U/29** – Upsize 30.5m of Foul Sewer from 300mm to 400mm diameter
- **Upgrade Ref. WHI/30/U/3** – Upsize 52.7m of Foul Sewer from 225mm to 450mm diameter
- **Upgrade Ref. WHI/30/U/30** – Upsize 1,117.2m of Foul Sewer from 300mm to 450mm diameter
- **Upgrade Ref. WHI/30/U/31** – Upsize 131.6m of Foul Sewer from 225mm to 900mm diameter
- **Upgrade Ref. WHI/30/U/32** – Upsize 1,237.3m of Foul Sewer from 225mm to 525mm diameter
- **Upgrade Ref. WHI/30/U/33** – Upsize 103.3m of Foul Sewer from 300mm to 375mm diameter
- **Upgrade Ref. WHI/30/U/4** – Upsize 33.4m of Foul Sewer from 225mm to 375mm diameter
- **Upgrade Ref. WHI/30/U/5** – Upsize 22.8m of Foul Sewer from 225mm to 375mm diameter
- **Upgrade Ref. WHI/30/U/6** – Upsize 78.3m of Foul Sewer from 225mm to 375mm diameter

- **Upgrade Ref. WHI/30/U/7** - Upsize 82.8m of Foul Sewer from 225mm to 375mm diameter
- **Upgrade Ref. WHI/30/U/8** - Upsize 184.6m of Foul Sewer from 225mm to 375mm diameter
- **Upgrade Ref. WHI/30/U/9** - Upsize 714.2m of Foul Sewer from 225mm to 375mm diameter

3.14.2. 2055 Preferred Solution

To ensure compliance with Storm Water Overflow (SWO) regulations and address flooding risks at critical locations—particularly those affected by proposed development—the following upgrade solutions have been proposed. Detailed drawings of these solutions can be found in Appendix C.

Whitegate WwPS:

- **Upgrade Ref. WHI/55/B/1 - Upgrade Storm Tank Storage from 1,400m³ to 1,592m³**

3.14.3. 2080 Preferred Solution

To achieve compliance with Storm Water Overflow (SWO) and flooding requirements at key ancillary sites, the following upgrade solutions have been proposed. Refer to Appendix C for detailed solution drawings.

Whitegate WwPS:

- **Upgrade Ref. WHI/80/B/1 - Upgrade Storm Tank Storage from 1,592m³ to 4,000m³**

4. Flood Assessment

The tables below provide a catchment summary of the worst-case cumulative catchment out of sewer flood volumes for the 30-year design storm (including climate change) for the various design horizons within the Cork Metropolitan area. The worst case 30-year design storm cumulative catchment flood volume has also been provided for the 2080 design horizon solution model. The table below highlights how existing network capacity issues will be exacerbated across all catchments with the proposed development through the design horizons of 2030, 2055 and 2080. For completeness the 2080 design horizon Solution model, predicted flooding results have also been included to document the flood reductions from the proposed solutions.

For the 2080 solution scenario, residual model predicted flooding remains in some areas of the network. These however are in areas of the model which are currently classed as low-confidence, or model predicted only flooding which are currently unconfirmed on site. Both the low confidence areas and model predicted locations have been modelled using engineering judgment. To improve model confidence in these areas, it is recommended that further investigation and surveys be undertaken. Catchments such as Kileens and Midleton predict a decrease in flood volumes for the 2030 development scenario compared to the current 2024 scenario. This reduction is attributed to ongoing network upgrades within these catchments, which have been incorporated into the 2030 development model and thus resolve some of the existing network capacity issues. Similar upgrades have been implemented across all catchments for 2030, 2055, and 2080 design horizons as part of the ongoing national investment program.

Table 4.1 Flood Volume Analysis for 5 Year Return Period

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Ballincollig	2,498	2,893	1,932	1,932
Midleton	1,669	1,495	1,707	1,617
Carraigtwohill				
Cork Lower Harbour*	10,192	10,033	10,238	8,435
Cork City - Little Island	13,575	20,166	21,442	640
Cork City - Tramore Valley	10,305	10,979	11,003	198

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Cork City - North & South (incl. Killeens & Whitechurch)	63,426	73,014	76,754	1,336
Cork City - Bessborough & Mahon	2,571	2,676	2,813	-
Cork City - Gilabbey Rock WwPS	10,284	12,862	15,961	224
Ballincurrig*	-	-	-	-
Ballygarvan*	233	242	251	-
Ballymore*	98	98	99	-
Berrings*	-	-	-	-
Blarney*	17,617	30,720	34,781	-
Carrignavar*	400	424	441	-
Cloyne*	1,271	1,503	2,049	-
Coole East	28	52	156	-
Courtbrack*	420	431	442	-
Dripsey*	-	-	-	-

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Grenagh*	549	580	643	-
Halfway*	-	-	-	-
Inniscarra*	337	461	612	-
Killumney*	148	425	1,072	-
Knockraha*	-	101	311	-
Leamlara*	-	-	-	-
Lisgoold*	234	73	83	-
Matehy*	-	-	-	-
Minane Bridge*	-	-	-	-
Myrtlevalley*	72	73	74	-
Saleen*	170	171	172	-
Watergrasshill*	3,459	4,968	5,159	-
Whitegate-Agada*	3,424	3,496	3,519	-

Table 4.2 Flood Volume Analysis for 10 Year Return Period

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Ballincollig	3,958	4,433	3,204	3,407
Midleton	2,205	2,074	2,295	2,107
Carrigtwohill				
Cork Lower Harbour*	13,342	13,227	13,669	10,841
Cork City - Little Island	16,769	23,762	23,880	862
Cork City - Tramore Valley	15,153	16,157	15,679	319
Cork City - North & South (incl. Killeens & Whitechurch)	90,816	102,563	101,252	2,058
Cork City - Bessborough & Mahon	3,834	3,956	4,045	29
Cork City - Gilabbey Rock WwPS	15,715	19,763	21,902	460
Ballincurrig*	-	-	-	-
Ballygarvan*	363	374	251	-
Ballymore*	158	136	99	-

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Barrings*	-	-	-	-
Blarney*	23,437	37,183	34,781	-
Carrignavar*	517	541	441	-
Cloyne*	1,695	1,976	2,049	-
Coole East	40	65	169	-
Courtbrack*	585	572	583	-
Dripsey*	-	-	-	-
Grenagh*	713	750	820	-
Halfway*	27	27	28	-
Inniscarra*	384	506	654	-
Killumney*	237	541	1,211	-
Knockraha*	-	105	315	-
Leamlara*	-	-	-	-
Lisgoold*	296	149	160	-

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Matehy*	-	-	-	-
Minane Bridge*	-	-	-	-
Myrtlevalley*	105	107	108	-
Saleen*	231	233	233	-
Watergrasshill*	4,588	6,095	6,293	-
Whitegate-Agada*	4,410	4,498	4,519	-

Table 4.3 Flood Volume Analysis for 30 Year Return Period

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Ballincollig	4,668	5,181	5,181	3,448
Midleton	3,228	3,313	3,429	3,231
Carrigtwohill	562	604	624	376
Cork Lower Harbour*	29,459	37,287	38,946	16,074
Cork Settlements	29,343	44,635	50,710	-

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Cork City - Little Island	20,595	27,660	28,935	2,409
Cork City - Tramore Valley	27,042	27,736	27,786	3,206
Cork City - North & South (incl. Killeens & Whitechurch)	142,716	150,898	156,705	8,027
Cork City - Bessborough & Mahon	7,323	6,962	7,143	1,198
Cork City - Gilabbey Rock WwPS	28,903	33,120	36,543	2,229
Ballincurrig*	-	-	-	-
Ballygarvan*	433	444	454	-
Ballymore*	247	248	249	-
Berrings*	-	-	-	-
Blarney*	29,332	44,183	48,432	-
Carrignavar*	633	657	676	-
Cloyne*	2,084	2,407	2,967	109
Coole East	53	77	181	
Courtbrack*	745	757	768	-

Catchment	2030 Design Horizon	2050 Design Horizon	2080 Design Horizon	2080 Solution Scenario
	Cumulative Flood Volume (m3)			
Dripsey*	-	-	-	-
Grenagh*	977	1,018	1,090	-
Halfway*	43	44	44	-
Inniscarra*	412	534	680	-
Killumney*	320	650	1,363	-
Knockraha*	-	109	319	-
Leamlara*	37	38	38	-
Lisgoold*	322	188	199	-
Matehy*	-	-	-	-
Minane Bridge*	-	-	-	-
Myrtlevalley*	236	239	241	-
Saleen*	352	355	357	57
Watergrasshill*	5,683	7,232	7,434	-
Whitegate-Agada*	5,702	5,781	5,830	248

5. Environmental Risk – Storm Water Overflows Summary

Table within Appendix B compares compliant and non-compliant overflows and their impact on catchments across various development scenarios, including the solution model for 2080. It highlights network capacity issues, shown by incremental non-compliant overflows with increasing development in the 2030, 2055, and 2080 scenarios. All SWOs have been addressed in accordance with environmental regulations and the recast Urban Wastewater Treatment Directive (rUWWTD). A detailed analysis of model predicted spill volume, spill frequency, and compliance criteria for each SWO is available in the Appendix B.

6. Model Scenarios

Table 6.1 below outlines the scenarios which were accessed as part for the study.

Model	Scenario Name	Scenario Description
Cork City	CC 2030 Dev	The 2030, 2055, and 2080 development scenarios—covering population growth, commercial expansion, runoff areas, and new network requirements—were individually modelled for each respective scenario.
	CC 2055 Dev	
	CC 2080 Dev	
	CC 2030 Dev_Infra	Cork City DAP stage 4 infrastructure solution model added with the 2030, 2055, and 2080 development scenarios—covering population growth, commercial expansion, runoff areas, and new network requirements—were individually modelled for each respective scenario.
	CC 2055 Dev_Infra	
	CC 2080 Dev_Infra	
	CC Preferred Sol - 2030	The Cork City DAP Stage 4 infrastructure solution network was employed to develop a comprehensive strategy addressing non-compliant Storm Water Overflows (SWOs) under the 2030 development scenario, while also mitigating flood risks associated with future development impacts across Cork City and the northern settlement catchments.
	CC Preferred Sol – 2055 (1A)	The Cork City DAP Stage 4 infrastructure solution network was employed to develop a comprehensive strategy addressing non-compliant Storm Water Overflows (SWOs) under the 2055 and 2080 development scenario, while also mitigating flood risks associated with future development impacts across Cork City and the northern settlement catchments.
	CC Preferred Sol – 2080 (1A)	Option 1A represents the worst-case scenario, encompassing all Cork City catchments along with the northern settlements. Despite its conservative assumptions, this option was selected as the preferred solution within the study.
	CC Preferred Sol – 2055 (1B)	The Cork City DAP Stage 4 infrastructure solution network was utilized to develop a strategy within the study area to address non-compliant Storm Water Overflows (SWOs) under the 2055 and 2080 development scenario, as well as to mitigate flooding risks associated with future development impacts. Option 1B is an alternative solution proposed to demonstrate the diversion of a portion of Cork City flows to Cork Lower Harbour, thereby relieving capacity constraints at the siphon chamber and reducing the required storage volume at the Atlantic Pool Pumping Station. This option, like Option 1A, also includes the northern settlement catchments.
Cork Lower Harbour	CC Preferred Sol – 2080 (1B)	
	CLH 2030 Dev	The 2030, 2055, and 2080 development scenarios covering population growth, commercial expansion, runoff areas, and new network requirements were individually modelled for each respective scenario.
	CLH 2055 Dev	
	CLH 2080 Dev	
	CLH Preferred Sol - 2030	A solution was developed as part of a comprehensive strategy to address non-compliant Storm Water Overflows (SWOs)
	CLH Preferred Sol - 2055	

Model	Scenario Name	Scenario Description
Ballincollig	CLH Preferred Sol - 2080	under the 2030, 2055 and 2080 development scenario, while also mitigating flood risks associated with future development impacts across the Cork Lower Harbour and the southern settlement catchments.
	CC Alternate Option- 2055 (1B)	A solution was developed as part of a comprehensive strategy to address non-compliant Storm Water Overflows (SWOs) under the 2055 and 2080 development scenario respectively, while also mitigating flood risks associated with future development impacts across the Cork Lower Harbour and the southern settlement catchments.
	CC Alternate Option- 2080 (1B)	Option 1B is an alternative solution proposed to demonstrate the diversion of a portion of Cork City flows to Cork Lower Harbour, thereby relieving capacity constraints at the siphon chamber and reducing the required storage volume at the Atlantic Pool Pumping Station. This option, like preferred option, also includes the southern settlement catchments.
	BLG 2030 Dev	The 2030, 2055, and 2080 development scenarios—covering population growth, commercial expansion, runoff areas, and new network requirements—were individually modelled for each respective scenario.
	BLG 2055 Dev	
	BLG 2080 Dev	
	BLG Preferred Sol - 2030	
	BLG Preferred Sol - 2055	
	BLG Preferred Sol - 2080	A solution was developed as part of a comprehensive strategy to address non-compliant Storm Water Overflows (SWOs) under the 2030, 2055 and 2080 development scenario, while also mitigating flood risks associated with future development impacts across the Ballincollig and the Killumney catchment.
	MLD & CRG 2030 Dev	The 2030, 2055, and 2080 development scenarios—covering population growth, commercial expansion, runoff areas, and new network requirements—were individually modelled for each respective scenario.
Middleton & Carrigtwohill	MLD & CRG 2055 Dev	
	MLD & CRG 2080 Dev	
	MLD & CRG Preferred Sol - 2030	A solution was developed as part of a comprehensive strategy to address non-compliant Storm Water Overflows (SWOs) under the 2030, 2055 and 2080 development scenario, while also mitigating flood risks associated with future development impacts across the Middleton and the Carrigtwohill catchments.
	MLD & CRG Preferred Sol - 2055	
	MLD & CRG Preferred Sol - 2080	
Cork Settlements	CS 2030 Dev	The 2030, 2055, and 2080 development scenarios—covering population growth, commercial expansion, runoff areas, and new network requirements—were individually modelled for each respective scenario.
	CS 2055 Dev	
	CS 2080 Dev	
	CS Preferred Sol - 2030	A solution was developed as part of a comprehensive strategy to address non-compliant Storm Water Overflows (SWOs) under the 2030, 2055 and 2080 development scenario, while also mitigating flood risks associated with future development impacts across the Cork settlement catchments.
	CS Preferred Sol - 2055	
	CS Preferred Sol - 2080	

7. Limitations and Recommendations

Below are limitations and recommendations from the study.

- The primary limitation of this model is the absence of comprehensive survey data, which has led to a reliance on assumptions regarding network connectivity and ancillary structures. While GIS and InfoAsset data provided a foundation for the network model, the lack of detailed surveys meant that significant portions of the network had to be inferred using engineering judgment. This could affect some of the proposed solutions which involve pipe upsizes/conveyance options, as the existing wastewater infrastructure is not fully understood
- While some of the model databases used have undergone full verification, others—such as the Cork Lower Harbour and Cork Settlements databases—remain unverified. This introduces uncertainty regarding the accuracy of flow predictions to key assets within the wastewater network, which could influence the reliability of proposed solutions during detailed design stage.
- As part of the strategy solution development, several locations have been identified where reducing rainfall-induced infiltration and tidal ingress is proposed as part of a green solution. It is important to note that this study is strategic in nature, and no site visits or surveys were conducted. The proposed infiltration points are based on the available hydraulic models and other data sources. Further investigations are recommended for future users to accurately trace the exact locations of these infiltration sources before implementing the proposed solutions.
- The Cork City siphon chamber is currently operating at maximum capacity, which restricts the discharge rate from the major terminal pumping station, Atlantic Pond WwPS. This constraint places additional pressure on the station, particularly when considering future design horizons. Furthermore, the Storm Water Overflow (SWO) at the Atlantic Pond Pumping Station has been identified as non-compliant under both current and projected future conditions.

A strategic assessment has determined that approximately 80,000 m³ of additional storage capacity will be required at the Atlantic Pond Pumping Station to achieve SWO compliance without increasing flow through the downstream siphons. Although the preferred strategy does not include diverting flows from the Cork South area (specifically, Ronaynes Court WwPS) to Shanbally, implementing this diversion would allow more flow to pass through the siphon in the absence of Ronaynes Court WwPS contributions. As a result, the required storage volume at Atlantic Pool could be reduced from approximately 80,000 m³ to 50,000 m³.

Appendix A – Development Sites

1. Cork City Development Details

Table 1: Development Updates for City Centre, Docklands.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
CD-R-01	228	228	228	0.5	0.5	0.5	0.1	0.1	0.1
CD-R-02	714	714	714	1.6	1.6	1.6	0.3	0.3	0.3
CD-R-03	1,027	1,027	10,27	2.3	2.3	2.3	0.4	0.4	0.4
CD-R-04	2,347	2,347	2,347	5.2	5.2	5.2	0.8	0.8	0.8
CD-R-05	1,395	1,395	1,395	3.1	3.1	3.1	0.5	0.5	0.5
CD-R-06	774	774	774	1.7	1.7	1.7	0.3	0.3	0.3
CD-T-01	229	307	307	0.5	0.7	0.7	0.1	0.1	0.1
Totals	6,714	6,792 (+78)	6,792	14.9l/s	15.1l/s (+0.2l/s)	15.1l/s	2.5l/s	2.5l/s	2.5l/s
2055 Development Details									
CD-MU-01	N/A	85	85	N/A	0.2	0.2	N/A	0.0	0.0
CD-MU-02	N/A	275	275	N/A	0.6	0.6	N/A	0.1	0.1
CD-MU-03	N/A	118	171	N/A	0.3	0.4	N/A	0.0	0.1
CD-MU-04	N/A	234	234	N/A	0.5	0.5	N/A	0.1	0.1
CD-MU-06	N/A	1,333	1,333	N/A	2.9	2.9	N/A	0.5	0.5
CD-MU-07	N/A	1,724	1,724	N/A	3.8	3.8	N/A	0.6	0.6
CD-R-07	N/A	2,495	2,495	N/A	5.5	5.5	N/A	0.9	0.9

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
CD-R-08	N/A	543	543	N/A	1.2	1.2	N/A	0.2	0.2
CD-R-09	N/A	239	239	N/A	0.5	0.5	N/A	0.1	0.1
CD-R-10	N/A	1,466	1,466	N/A	3.2	3.2	N/A	0.5	0.5
CD-R-11	N/A	385	385	N/A	0.8	0.8	N/A	0.1	0.1
CD-R-12	N/A	388	388	N/A	0.9	0.9	N/A	0.1	0.1
CD-R-13	N/A	169	169	N/A	0.4	0.4	N/A	0.1	0.1
Totals	N/A	9,454	9,507 (+53)	N/A	20.8l/s	20.9l/s (+0.1l/s)	N/A	3.3l/s	3.4l/s (+0.1l/s)
2080 Development Details									
CD-MU-05	N/A	N/A	579	N/A	N/A	1.3	N/A	N/A	0.2
CD-LT-02	N/A	N/A	250	N/A	N/A	0.5	N/A	N/A	0.1
CD-LT-01	N/A	N/A	1,778	N/A	N/A	3.9	N/A	N/A	0.6
Totals	N/A	N/A	2,607	N/A	N/A	5.7l/s	N/A	N/A	0.9l/s

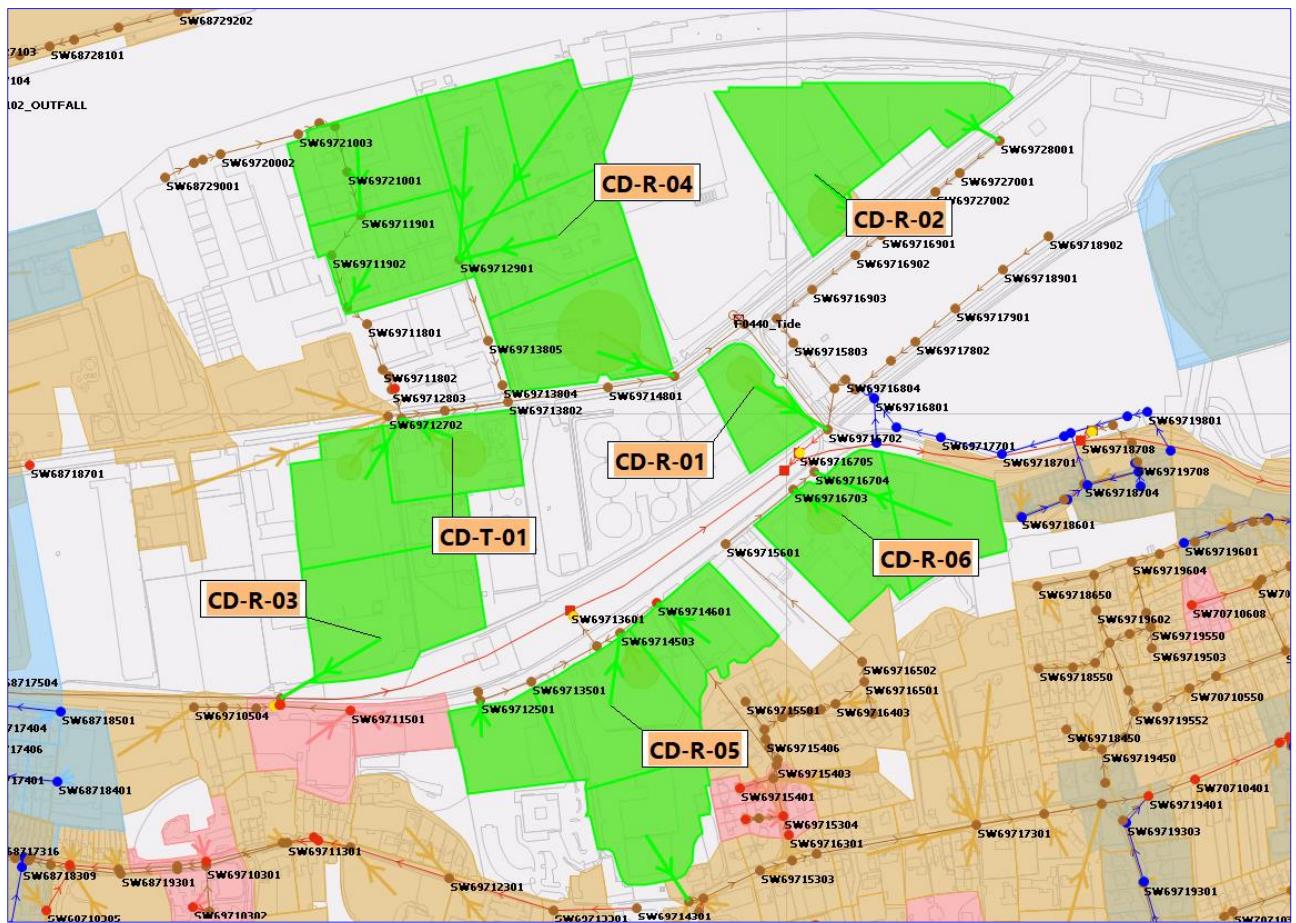


Figure 1: City Centre, Docklands 2030 Developments.

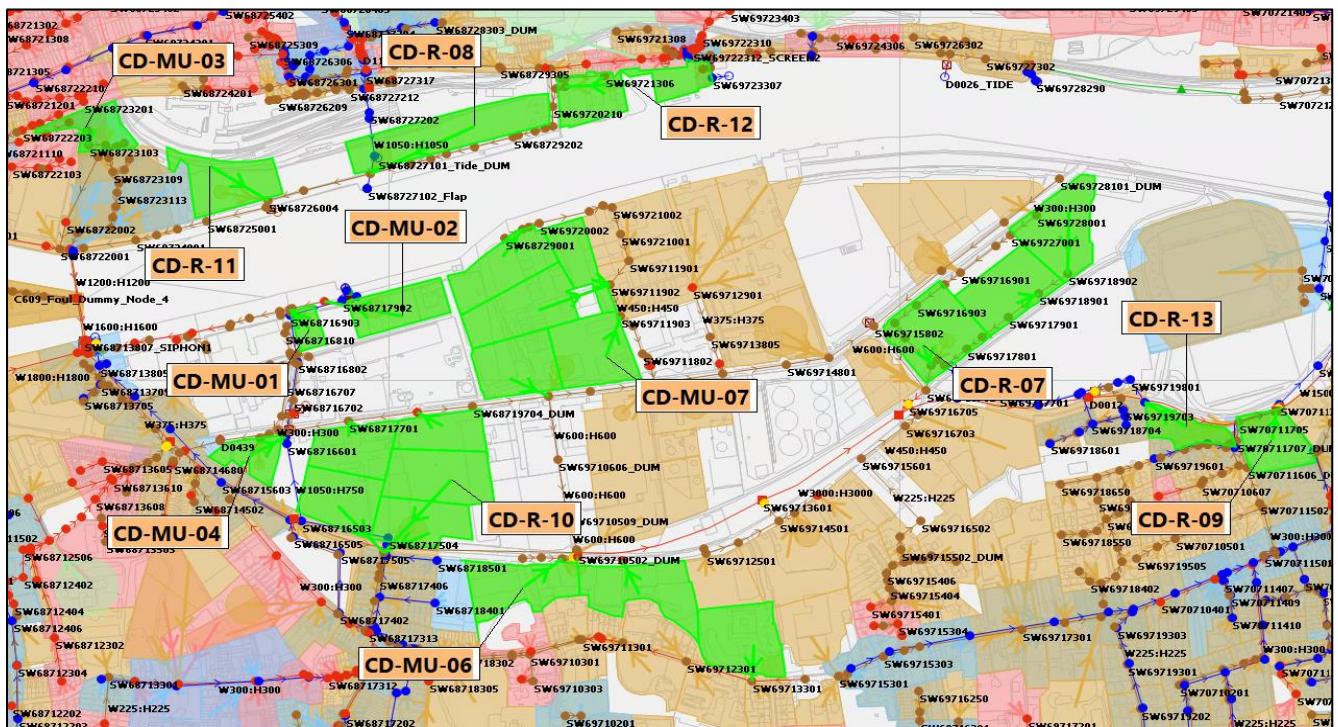


Figure 2: City Centre, Docklands 2055 Developments.

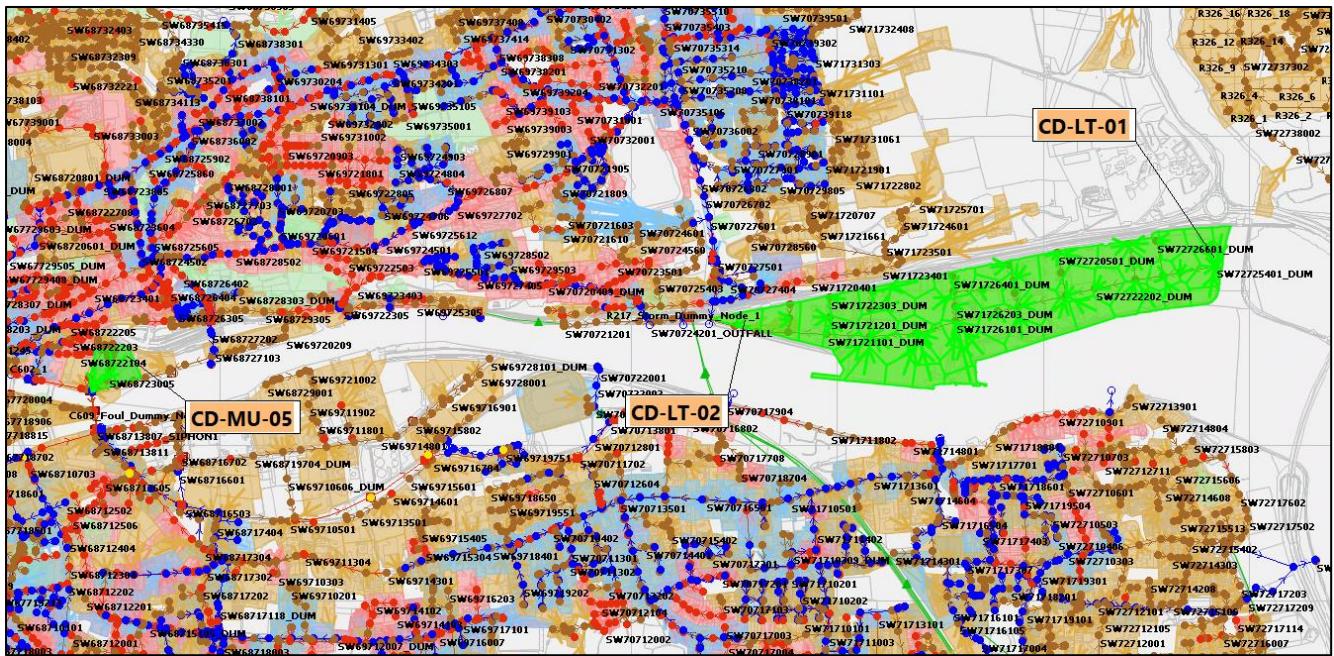


Figure 3: City Centre, Docklands 2080 Developments.

Table 2: Development Updates for Little Island and Glanmire (incl. Upper Glanmire and Glounthaune).

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
LI-RR-01	2,961	2,961	2,961	6.5	6.5	6.5	1.0	1.0	1.0
GE-R-02	2,995	3,028	3,028	6.6	6.7	6.7	1.1	1.1	1.1
GE-R-05	635	635	635	1.4	1.4	1.4	0.2	0.2	0.2
GE-R-07	413	413	413	0.9	0.9	0.9	0.1	0.1	0.1
GE-R-08	244	244	244	0.5	0.5	0.5	0.1	0.1	0.1
GE-T-01	127	127	127	0.3	0.3	0.3	0.0	0.0	0.0
GE-USC-01	192	192	192	0.4	0.4	0.4	0.1	0.1	0.1
UG-MU-01	158	179	179	0.3	0.4	0.4	0.1	0.1	0.1

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
UG-R-01	86	86	86	0.2	0.2	0.2	0.0	0.0	0.0
GN-R-01	443	443	443	1.0	1.0	1.0	0.2	0.2	0.2
GN-R-02	821	821	821	1.8	1.8	1.8	0.3	0.3	0.3
GN-R-03	554	554	554	1.2	1.2	1.2	0.2	0.2	0.2
GN-R-04	351	351	351	0.8	0.8	0.8	0.1	0.1	0.1
GN-RD	240	1,120	1,460	0.5	2.5	3.2	0.1	0.4	0.5
Totals	10,220	11,154 (+934)	11,494 (+340)	22.4l/s	24.6l/s (+2.2l/s)	25.3l/s (+0.7l/s)	3.6l/s	3.9l/s (+0.3l/s)	4.0l/s (+0.1l/s)
2055 Development Details									
LI-X-01	N/A	1,004	1,389	N/A	2.2	3.1	N/A	0.4	0.5
GE-R-01	N/A	5,465	5,465	N/A	12.0	12.0	N/A	1.9	1.9
GE-USC-02	N/A	199	199	N/A	0.4	0.4	N/A	0.1	0.1
GE-R-06	N/A	59	59	N/A	0.1	0.1	N/A	0.0	0.0
GE-R-03	N/A	90	90	N/A	0.2	0.2	N/A	0.0	0.0
GlanmireDummyRZD	N/A	2,392	4,671	N/A	2.9	34.9	N/A	0.5	5.6
UpperGlanmireDumm yRZD	N/A	246	341	N/A	5.3	10.3	N/A	0.8	1.6
Totals	N/A	9,455	12,214 (+2759)	N/A	23.1l/s	61l/s (+37.9l/s)	N/A	3.7l/s	9.7l/s (+6l/s)

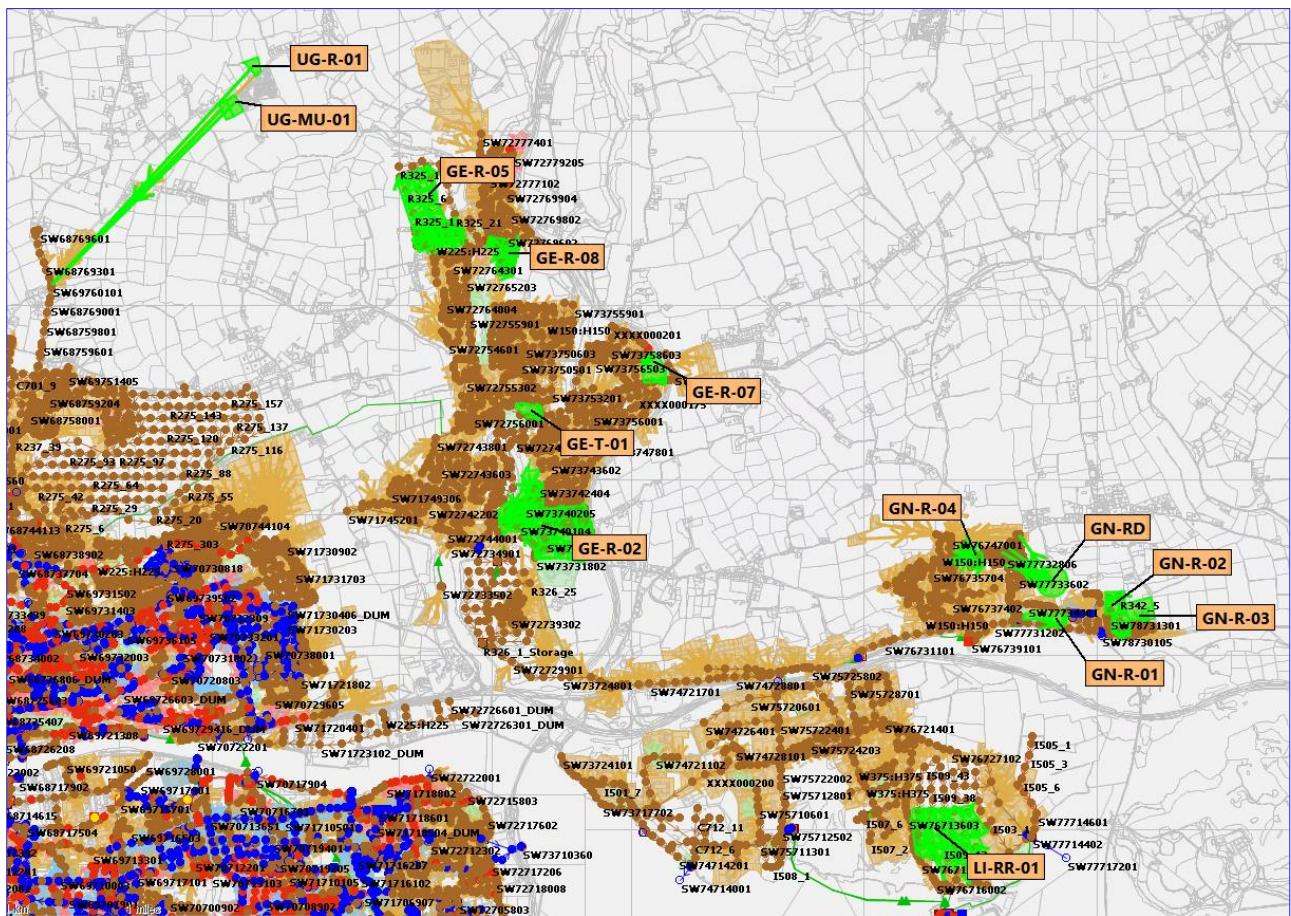


Figure 4: Development Updates for Little Island and Glanmire (incl. Upper Glanmire and Glounthaune) 2030.

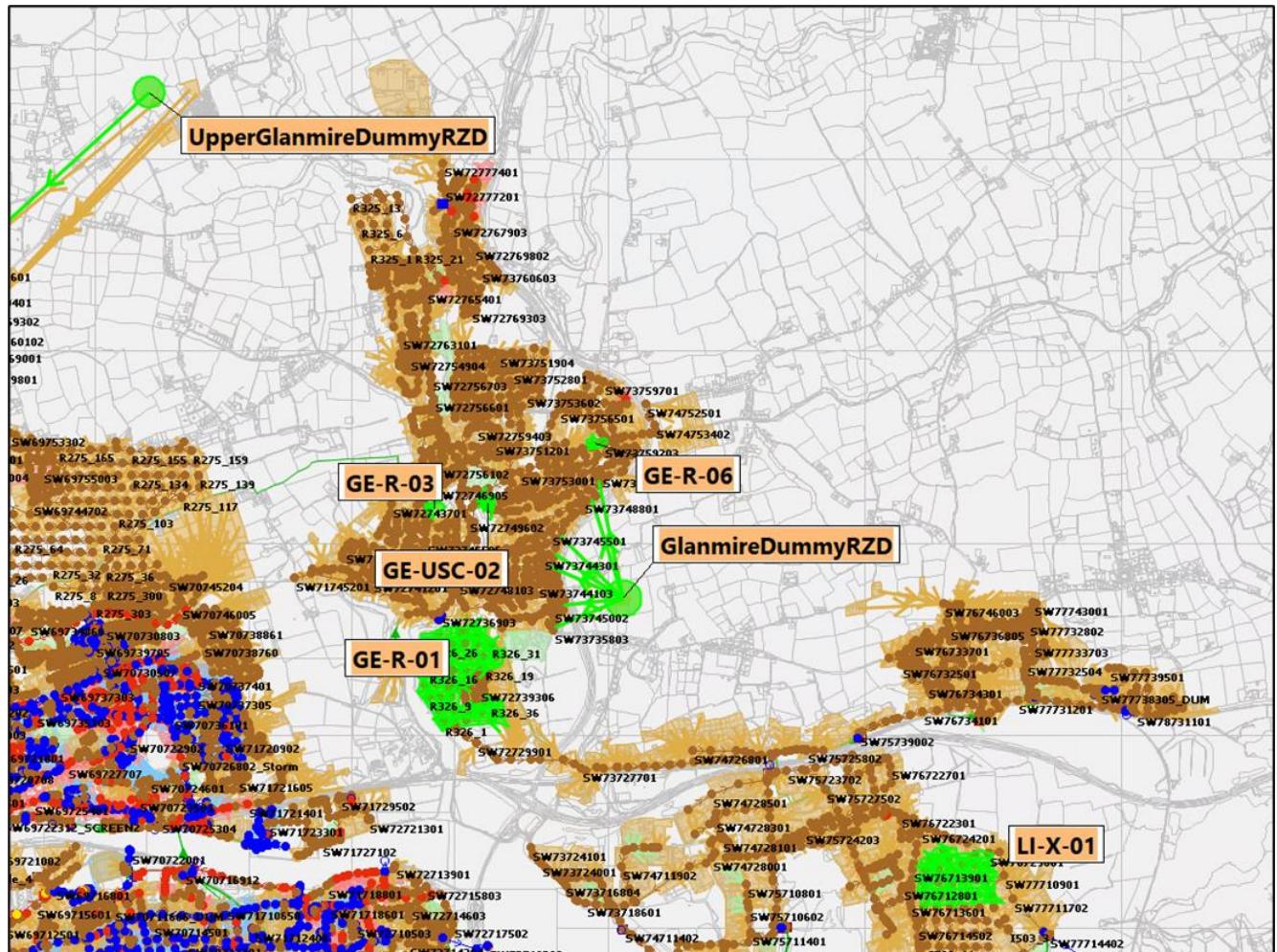


Figure 5: Development Updates for Little Island and Glanmire (incl. Upper Glanmire and Glounthaune) 2055.

Table 3: Development Updates for City Suburbs (incl. Ballincollig, Whitechurch and Monard).

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
CS-R-01	215	215	215	0.5	0.5	0.5	0.1	0.1	0.1
CS-R-03	33	895	895	0.1	2.0	2.0	0.0	0.3	0.3
CS-R-07	312	312	312	0.7	0.7	0.7	0.1	0.1	0.1

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
CS-R-08	312	312	312	0.7	0.7	0.7	0.1	0.1	0.1
CS-R-09	1,875	1,875	1,875	4.1	4.1	4.1	0.7	0.7	0.7
CS-R-10	1,500	1,500	1,500	3.3	3.3	3.3	0.5	0.5	0.5
CS-R-11	1,098	1,098	1,098	2.4	2.4	2.4	0.4	0.4	0.4
CS-R-13	323	323	323	0.7	0.7	0.7	0.1	0.1	0.1
CS-R-14	50	50	50	0.1	0.1	0.1	0.0	0.0	0.0
CS-R-15	604	604	604	1.3	1.3	1.3	0.2	0.2	0.2
CS-R-16	604	604	604	1.3	1.3	1.3	0.2	0.2	0.2
CS-R-17	751	751	751	1.7	1.7	1.7	0.3	0.3	0.3
CS-R-18	751	751	751	1.7	1.7	1.7	0.3	0.3	0.3
CS-R-27	1,516	1,516	1,516	3.3	3.3	3.3	0.5	0.5	0.5
CS-R-30	1,175	1,175	1,175	2.6	2.6	2.6	0.4	0.4	0.4
CS-R-31	1,444	1,444	1,444	3.2	3.2	3.2	0.5	0.5	0.5
CS-R-32	1,118	1,118	1,118	2.5	2.5	2.5	0.4	0.4	0.4
CS-R-33	207	207	207	0.5	0.5	0.5	0.1	0.1	0.1
T-01	99	227	344	0.2	0.5	0.8	0.0	0.1	0.1
BG-LT-03	672	1,793	1,793	1.5	3.9	3.9	0.2	0.6	0.6
MN-X-01	2,969	10,800	13,500	6.5	23.7	29.7	1.0	3.8	4.7
Totals	17,628	27,570 (+9,942)	30,387 (+2,817)	38.9l/s	60.7l/s (+21.8l/s)	67l/s (+6.3l/s)	6.1l/s	9.7l/s (+3.6l/s)	10.6l/s (+0.9l/s)

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055
2055 Development Details									
CS-LT-01	N/A	895	895	N/A	2.0	2.0	N/A	0.3	0.3
CS-LT-09	N/A	2,185	2,185	N/A	4.8	4.8	N/A	0.8	0.8
CS-R-04	N/A	895	895	N/A	2.0	2.0	N/A	0.3	0.3
CS-R-02	N/A	635	635	N/A	1.4	1.4	N/A	0.2	0.2
CS-R-12	N/A	93	93	N/A	0.2	0.2	N/A	0.0	0.0
CS-LT-04	N/A	8,874	8,874	N/A	19.5	19.5	N/A	3.1	3.1
CS-LT-11	N/A	280	280	N/A	0.6	0.6	N/A	0.1	0.1
CS-LT-02	N/A	336	336	N/A	0.7	0.7	N/A	0.1	0.1
CS-LT-03	N/A	112	112	N/A	0.2	0.2	N/A	0.0	0.0
CS-R-25	N/A	112	112	N/A	0.2	0.2	N/A	0.0	0.0
CS-R-26	N/A	471	471	N/A	1.0	1.0	N/A	0.2	0.2
CS-R-21	N/A	687	687	N/A	1.5	1.5	N/A	0.2	0.2
CS-R-22	N/A	396	396	N/A	0.9	0.9	N/A	0.1	0.1
CS-R-19	N/A	199	199	N/A	0.4	0.4	N/A	0.1	0.1
CS-R-24	N/A	118	118	N/A	0.3	0.3	N/A	0.0	0.0
CS-R-20	N/A	204	204	N/A	0.4	0.4	N/A	0.1	0.1
CS-LT-10	N/A	2,395	2,395	N/A	5.3	5.3	N/A	0.8	0.8
CS-LT-08	N/A	2,634	2,634	N/A	5.8	5.8	N/A	0.9	0.9
CS-LT-07	N/A	4,778	4,778	N/A	10.5	10.5	N/A	1.7	1.7

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
CS-LT-06	N/A	3,006	4,116	N/A	6.6	9.0	N/A	1.1	1.4
CS-R-28	N/A	11,58	1,158	N/A	2.5	2.5	N/A	0.4	0.4
CS-R-23	N/A	237	237	N/A	0.5	0.5	N/A	0.1	0.1
CS-R-34	N/A	179	179	N/A	0.4	0.4	N/A	0.1	0.1
CS-R-06	N/A	239	239	N/A	0.5	0.5	N/A	0.1	0.1
CS-R-05	N/A	413	413	N/A	0.9	0.9	N/A	0.1	0.1
CS-R-29	N/A	62	62	N/A	0.1	0.1	N/A	0.0	0.0
CS-USC-...	N/A	1,317	15,875	N/A	2.9	34.9	N/A	0.5	5.6
BG-LT-04	N/A	13,339	18,892	N/A	29.3	41.5	N/A	4.7	6.6
KilleensDummyRZD	N/A	219	314	N/A	0.5	0.7	N/A	0.1	0.1
KS-USC-01	N/A	59	59	N/A	0.1	0.1	N/A	0.0	0.0
Totals	N/A	46,527	67,843 (+21,316)	N/A	102l/s	148.8l/ s (+46.8l/ s)	N/A	16.2l/s	23.5l/s (+7.3l/s)
2080 Development Details									
CS-LT-05	N/A	N/A	3,822	N/A	N/A	8.4	N/A	N/A	1.3
Totals	N/A	N/A	3,822	N/A	N/A	8.4l/s	N/A	N/A	1.3l/s

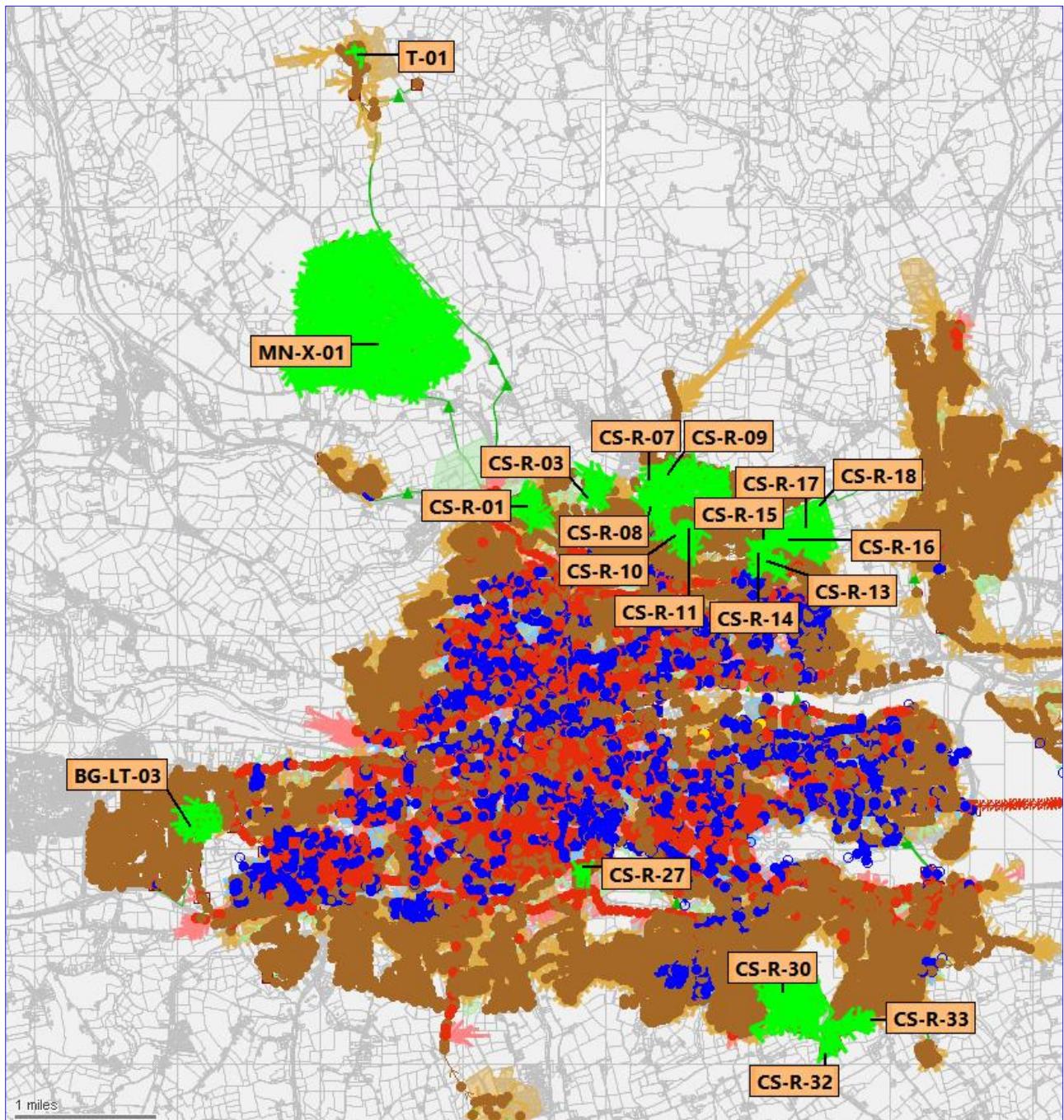


Figure 6: Development Updates for City Suburbs (incl. Ballincollig, Whitechurch and Monard) 2030.

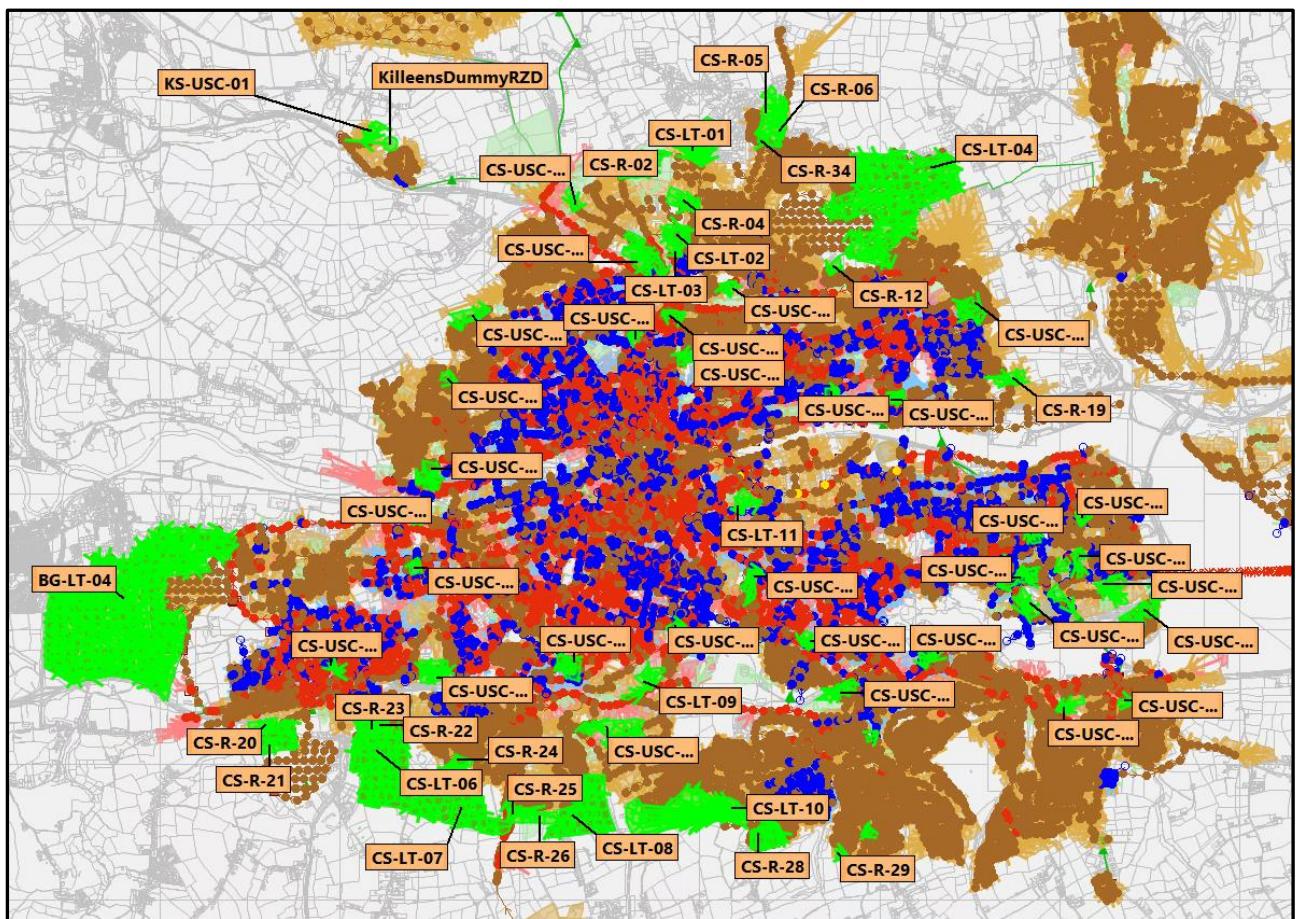


Figure 7: Development Updates for City Suburbs (incl. Ballincollig, Whitechurch and Monard) 2055..



Figure 8: Development Updates for City Suburbs (incl. Ballincollig, Whitechurch and Monard) 2080.

2. Cork Lower Harbour Development Details

Table 4: Development Updates for Carrigaline.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
CL-R-01	417	417	417	0.9	0.9	0.9	0.1	0.1	0.1
CL-R-02	150	150	150	0.3	0.3	0.3	0.1	0.1	0.1
CL-R-05	223	223	223	0.5	0.5	0.5	0.1	0.1	0.1
CL-R-06	328	328	328	0.7	0.7	0.7	0.1	0.1	0.1
CL-R-07	135	135	135	0.3	0.3	0.3	0.0	0.0	0.0
CL-R-08	135	135	135	0.3	0.3	0.3	0.0	0.0	0.0
CL-R-09	322	322	322	0.7	0.7	0.7	0.1	0.1	0.1
CL-R-10	1,000	1,000	1,000	2.2	2.2	2.2	0.4	0.4	0.4
CL-R-11	326	326	326	0.7	0.7	0.7	0.1	0.1	0.1
Totals	3,036	3,036	3,036	6.6l/s	6.6l/s	6.6l/s	1l/s	1l/s	1l/s
2055 Development Details									
CL-R-13	N/A	382	382	N/A	0.8	0.8	N/A	0.1	0.1
CL-R-12	N/A	575	575	N/A	1.3	1.3	N/A	0.2	0.2
CL-X-01	N/A	3,850	6,530	N/A	8.5	14.4	N/A	1.4	2.3
Totals	N/A	4,807	7,487 (+2,680)	N/A	10.6l/s	16.5l/s (+5.9l/s)	N/A	1.7l/s	2.6l/s (0.9l/s)
2080 Development Details									

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
N123_Dev	N/A	N/A	1,081	N/A	N/A	2.4	N/A	N/A	0.4
Totals	N/A	N/A	1,081	N/A	N/A	2.4	N/A	N/A	0.4

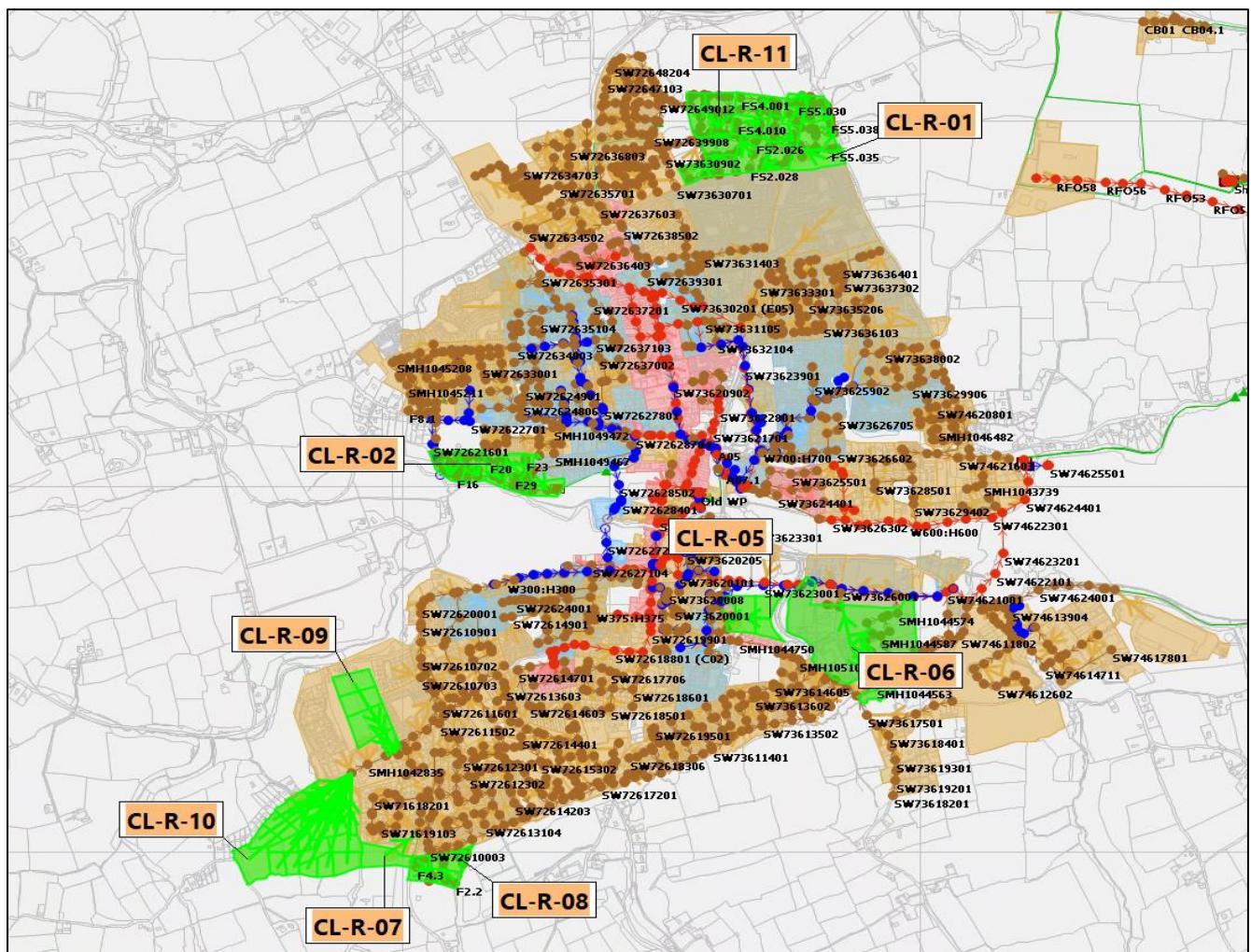


Figure 9: Development Updates for Carrigaline 2030.

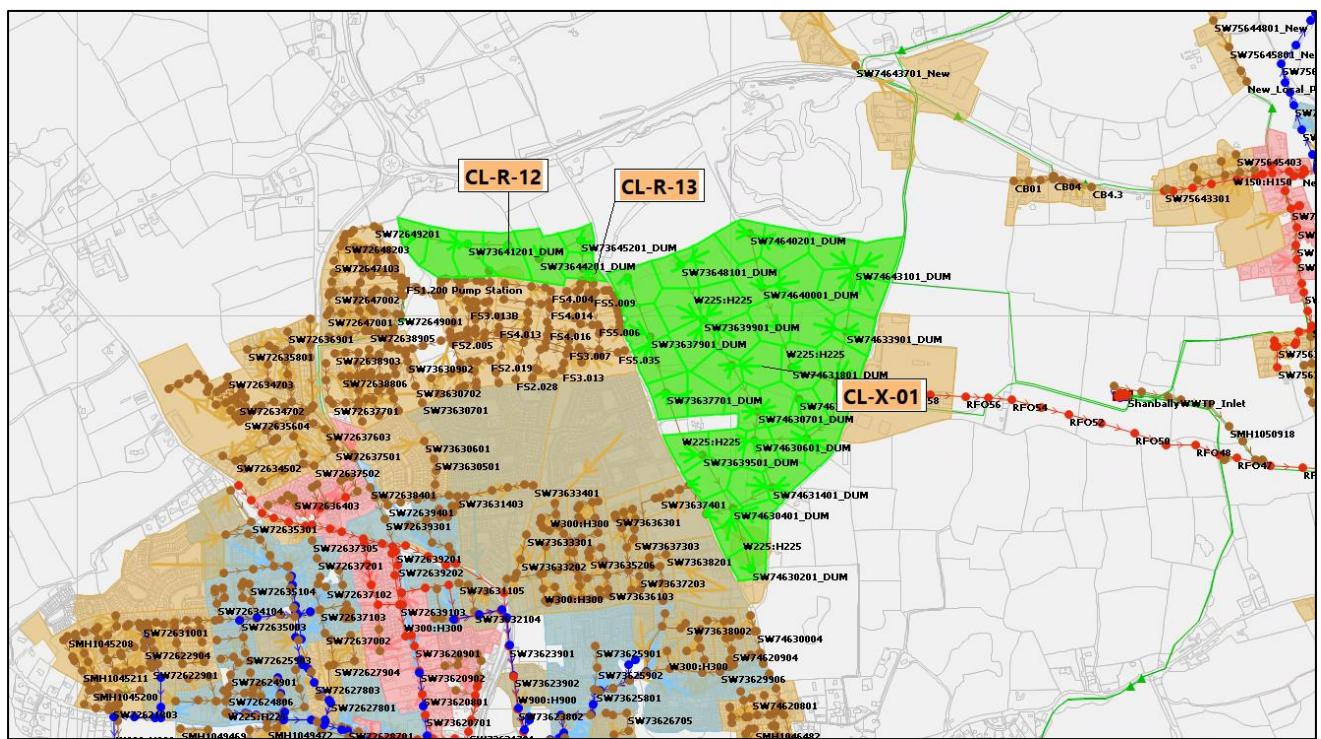


Figure 10: Development Updates for Carrigaline 2055.

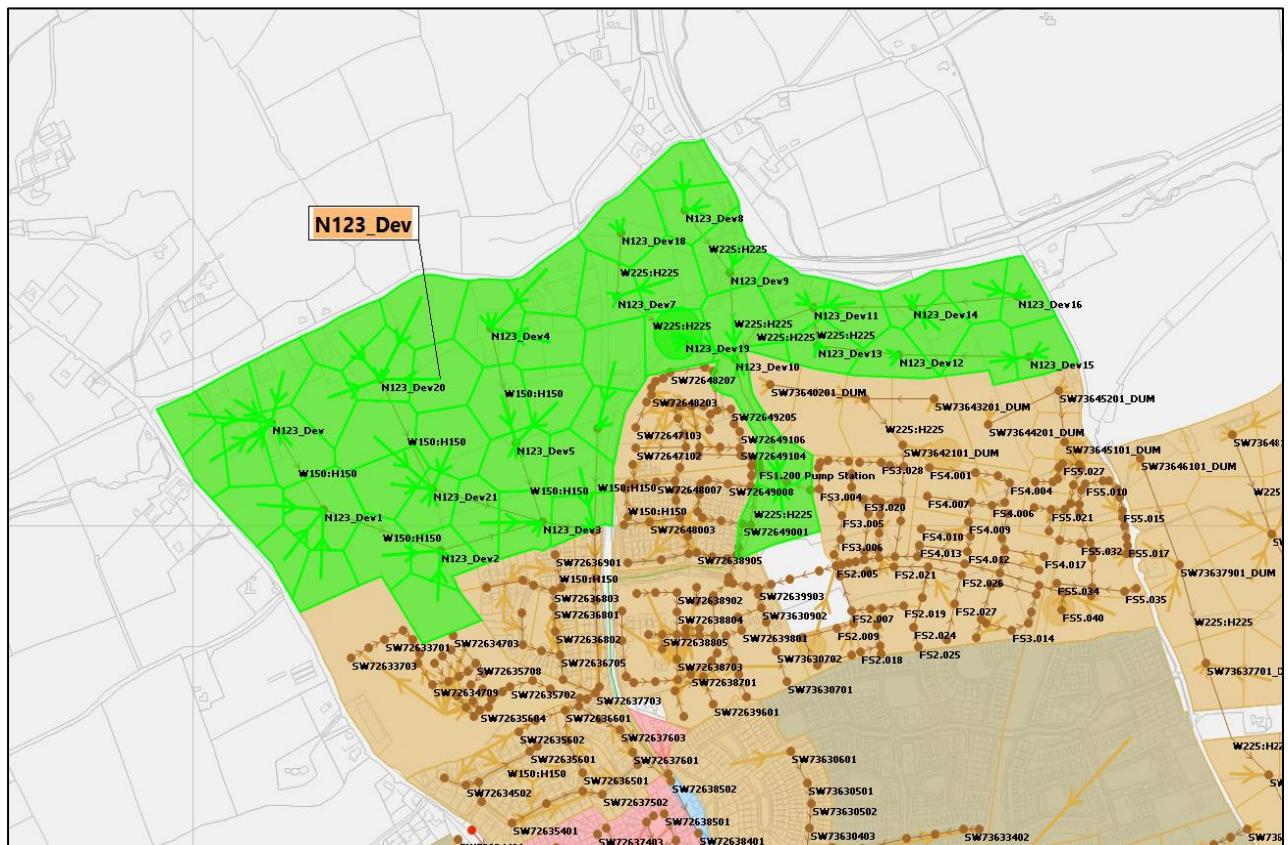


Figure 11: Development Updates for Carrigaline 2080.

Table 5: Development Updates for Cobh and North Cobh.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
CH-R-03	324	324	370	0.7	0.7	0.8	0.1	0.1	0.1
CH-R-04	386	386	440	0.8	0.8	1.0	0.1	0.1	0.2
CH-R-07	165	165	186	0.4	0.4	0.4	0.1	0.1	0.1
CH-R-08	332	332	378	0.7	0.7	0.8	0.1	0.1	0.1
CH-R-09	575	575	656	1.3	1.3	1.4	0.2	0.2	0.2
CH-R-10	65	65	73	0.1	0.1	0.2	0.0	0.0	0.0
CH-R-11	343	421	481	0.8	0.9	1.1	0.1	0.1	0.2
EEF406	7	7	7	0.0	0.0	0.0	0.0	0.0	0.0
Totals	2197	2275 (+78)	2591 (+316)	4.8l/s	4.9l/s (+0.1l/s)	5.7l/s (+0.8l/s)	0.7l/s	0.7l/s (+0.2l/s)	0.9l/s
2055 Development Details									
CH-R-12	N/A	473	540	N/A	1.0	1.2	N/A	0.2	0.2
CH-RFAP-05	N/A	57	65	N/A	0.1	0.1	N/A	0.0	0.0
CH-RFAP-13	N/A	483	551	N/A	1.1	1.2	N/A	0.2	0.2
CH-RAP-02	N/A	670	670	N/A	1.5	1.5	N/A	0.2	0.2
CH-RFAP-01	N/A	1,145	1,145	N/A	2.5	2.5	N/A	0.4	0.4
CH-RAP-06	N/A	462	527	N/A	1.0	1.2	N/A	0.2	0.2
CH-RFAP-14	N/A	262	734	N/A	0.6	1.6	N/A	0.1	0.3

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
Totals	N/A	3,552	4,232 (+680)	N/A	7.8l/s	9.3l/s (+1.5l/s)	N/A	1.3l/s (0.2l/s)	1.5l/s
2080 Development Details									
CH-RFAP-15	N/A	N/A	448	N/A	N/A	1.0	N/A	N/A	0.2
CH-RFAP-16	N/A	N/A	243	N/A	N/A	0.5	N/A	N/A	0.1
CH-X-01	N/A	N/A	529	N/A	N/A	1.2	N/A	N/A	0.2
CH-RR-01	N/A	N/A	413	N/A	N/A	0.9	N/A	N/A	0.1
CH-RFAP-17	N/A	N/A	251	N/A	N/A	0.6	N/A	N/A	0.1
Totals	N/A	N/A	1,884	N/A	N/A	4.2l/s	N/A	N/A	0.7l/s

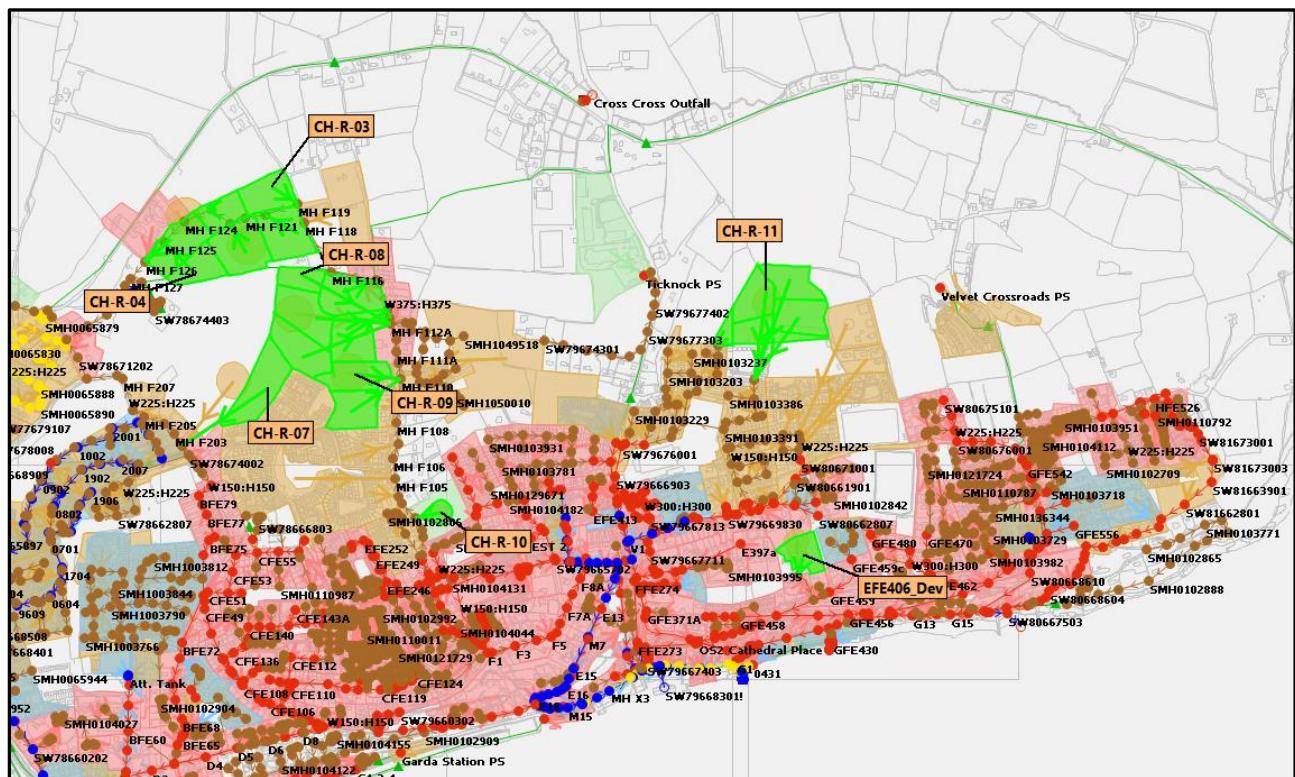


Figure 12: Development Updates for Cobh and North Cobh 2030.

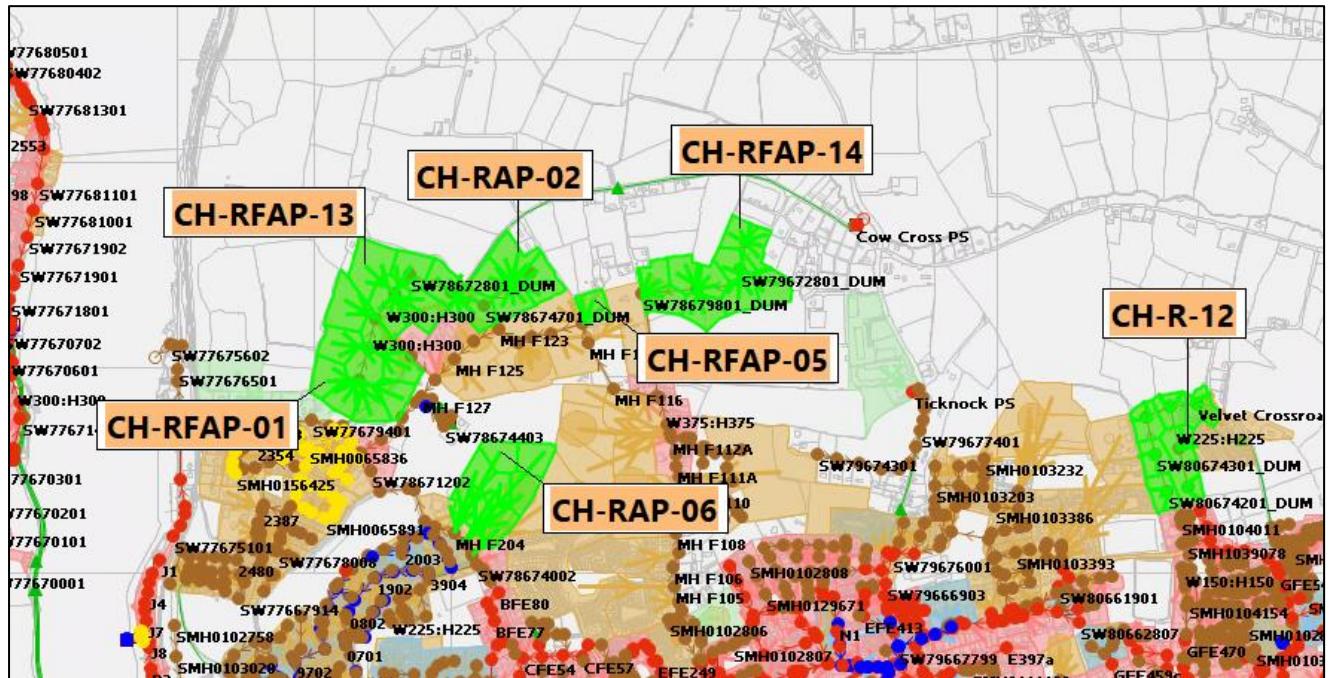


Figure 13: Development Updates for Cobh and North Cobh 2055.

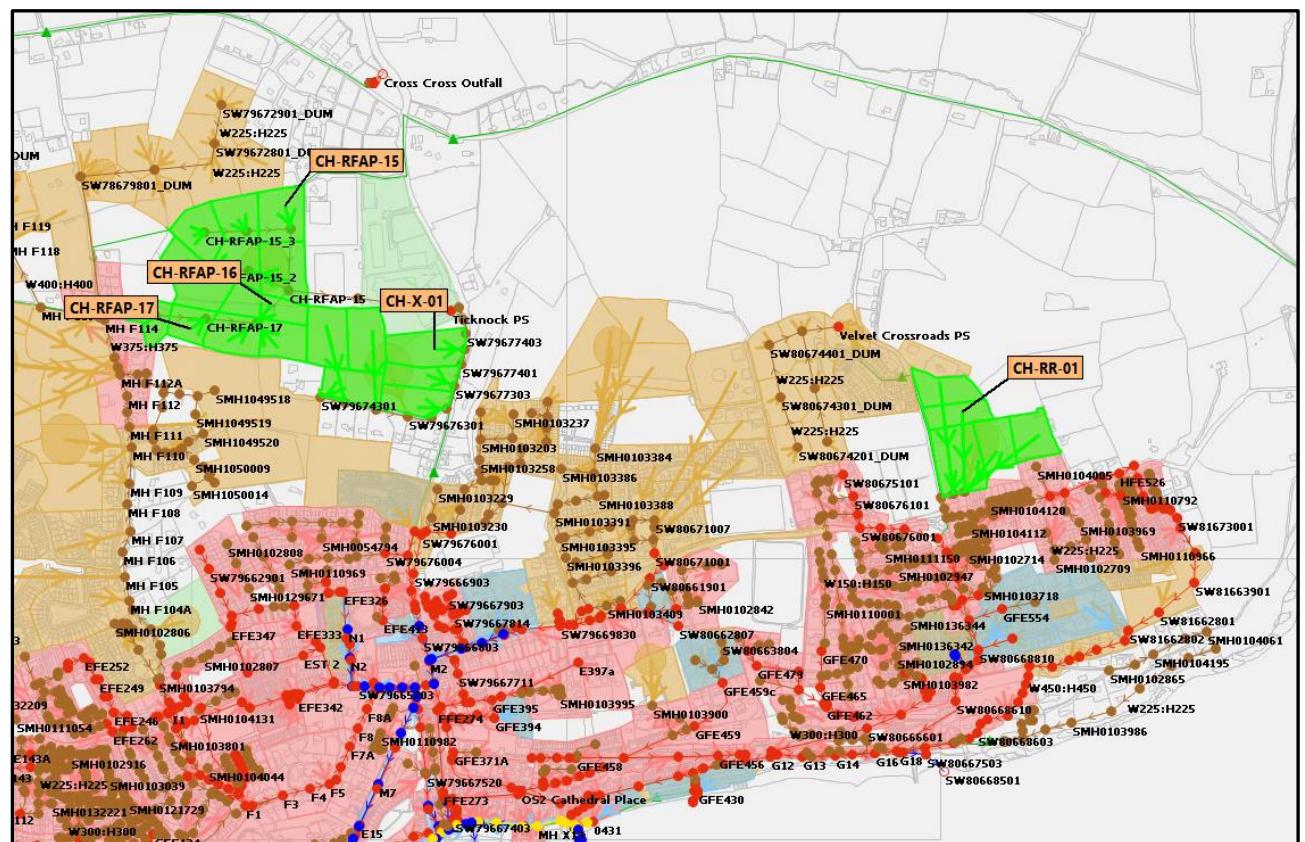


Figure 14: Development Updates for Cobh and North Cobh 2080.

Table 6: Development Updates for Crosshaven.

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
CS-R-01	334	535	535	0.7	1.2	1.2	0.1	0.2	0.2
Totals	334	535 (+201)	535	0.7l/s	1.2l/s (+0.5l/s)	1.2l/s	0.1l/s	0.2l/s (+0.1l/s)	0.2l/s
2055 Development Details									
CS-X-01	N/A	43	43	N/A	0.1	0.1	N/A	0.0	0.0
CS-RD	N/A	406	583	N/A	0.9	1.3	N/A	0.1	0.2
Totals	N/A	449	626 (+177)	N/A	1.0l/s	1.4l/s (+0.4l/s)	N/A	0.1l/s	0.2l/s (0.1l/s)

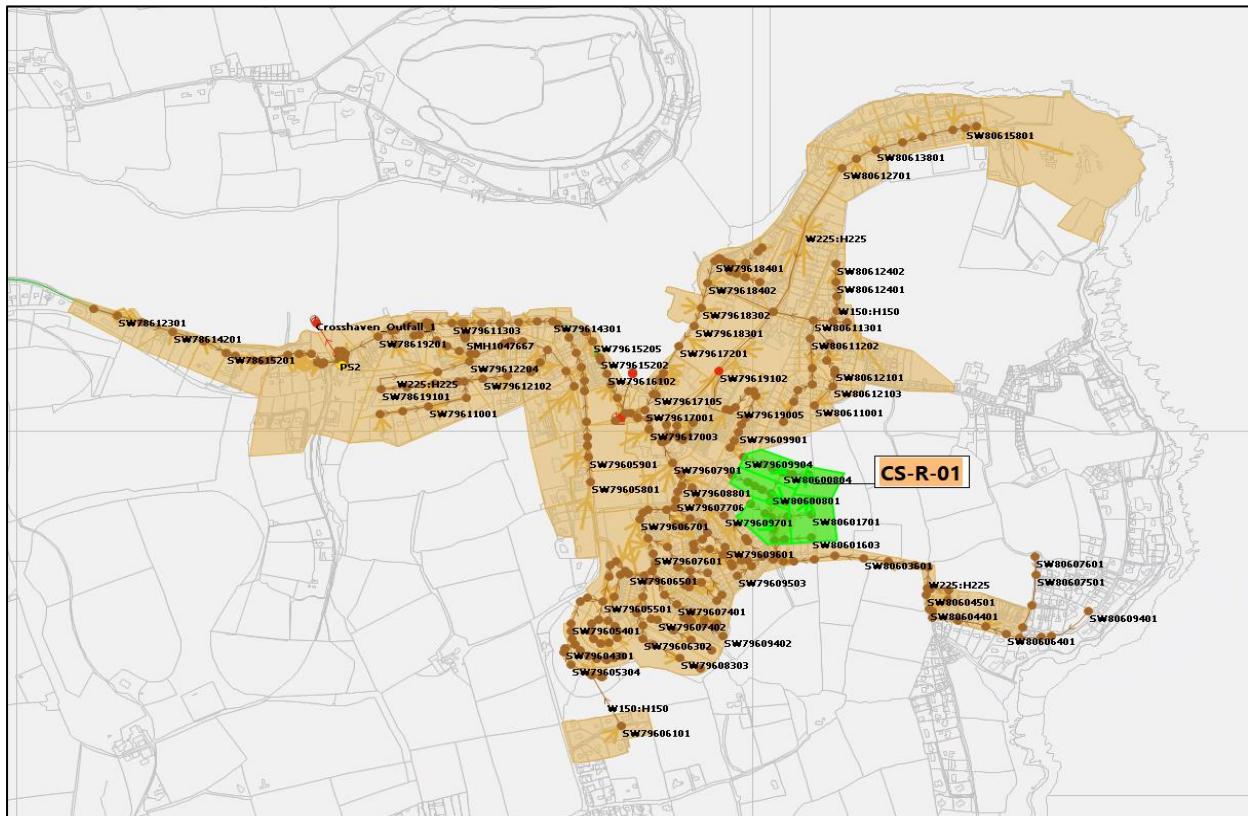


Figure 15: Development updates for Crosshaven 2030.

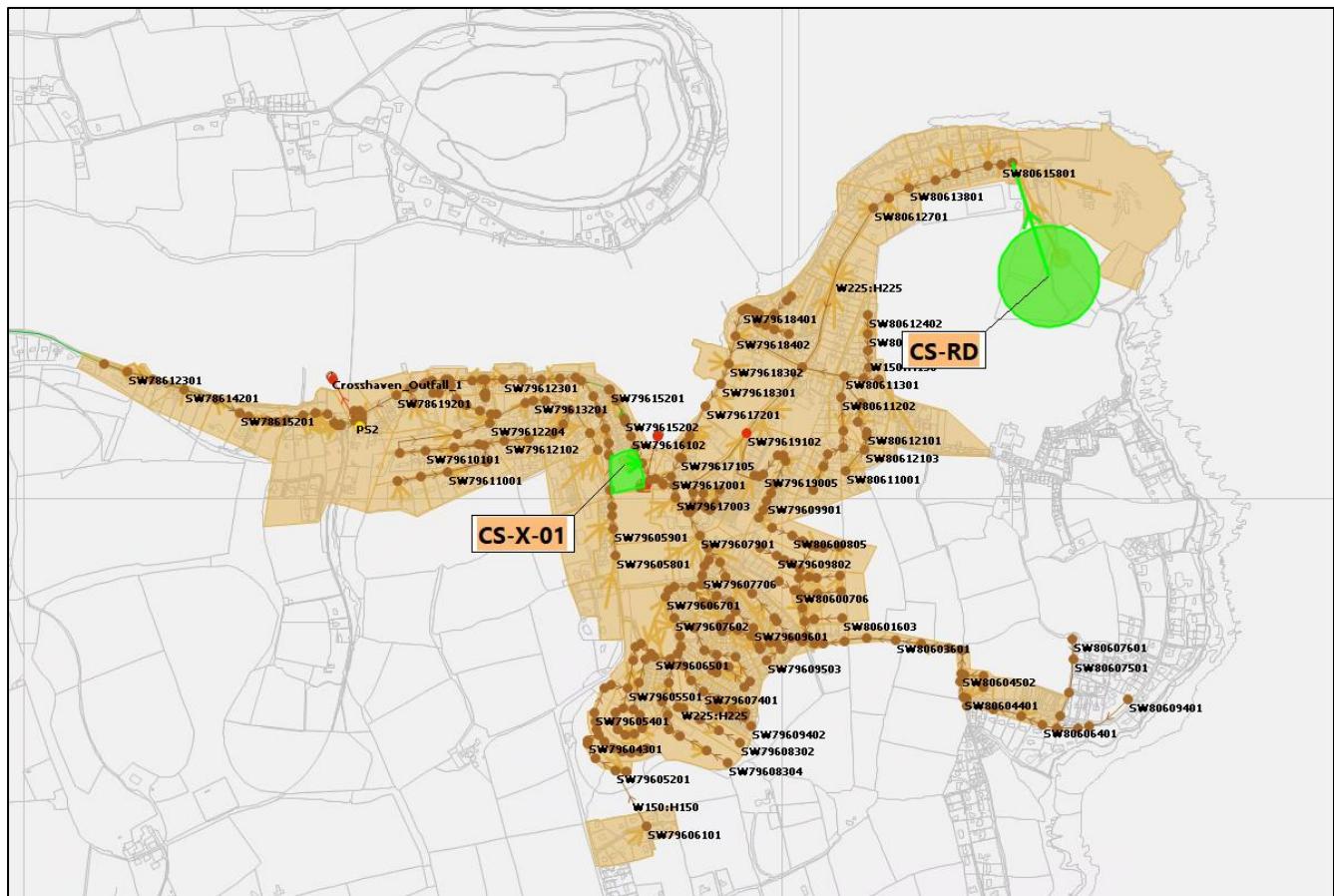


Figure 16: Development updates for Crosshaven 2055.

Table 7: Development Updates for Passage West and Monkstown.

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
P040A	300	300	300	0.7	0.7	0.7	0.1	0.1	0.1
P117	137	137	137	0.3	0.3	0.3	0.0	0.0	0.0
P130	83	83	83	0.2	0.2	0.2	0.0	0.0	0.0
P131	146	146	146	0.3	0.3	0.3	0.1	0.1	0.1
PW-R-02	270	473	473	0.6	1.0	1.0	0.1	0.2	0.2

PW-RAP-01	113	197	197	0.2	0.4	0.4	0.0	0.1	0.1
PW-RAP-03	19	154	154	0.0	0.3	0.3	0.0	0.1	0.1
Totals	1,068	1,490 (+422)	1,490	2.3/s	3.2l/s (+0.9l/s)	3.2l/s	0.3l/s	0.6l/s (+0.3l/s)	0.6l/s
2055 Development Details									
PW-RD	N/A	1,082	2,181	N/A	2.4	4.8	N/A	0.4	0.8
Totals	N/A	1,082	2,181 (+1,099)	N/A	2.4l/s	4.8l/s (+2.4l/s)	N/A	0.4l/s	0.8l/s (0.4l/s)

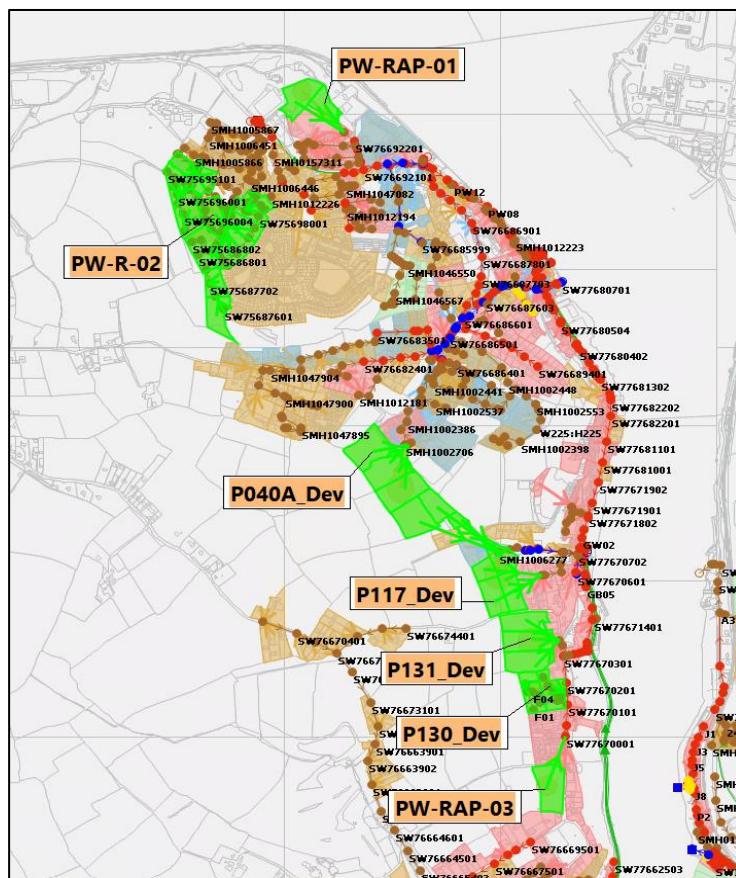


Figure 17: Development updates for Passage West and Monkstown 2030.

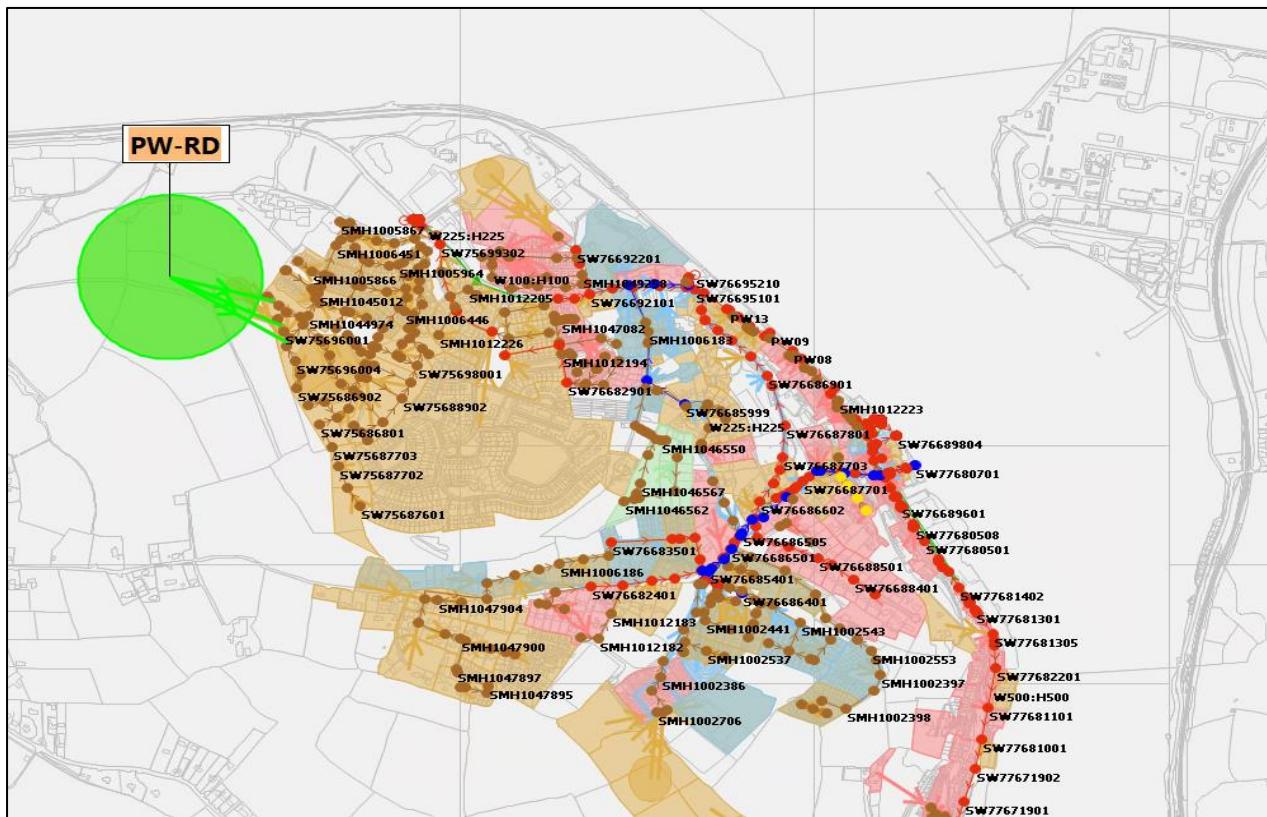


Figure 18: Development updates for Passage West and Monkstown 2055.

Table 8: Development Updates for Shanbally & Ringaskiddy.

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
RY-T-01	28	80	129	0.1	0.2	0.3	0.0	0.0	0.0
RY-T-04	143	257	265	0.3	0.6	0.6	0.1	0.1	0.1
Totals	171	227 (+166)	394 (+57)	0.4l/s	0.8l/s (+0.4l/s)	0.9l/s (+0.1l/s)	0.1l/s	0.1l/s	0.1l/s

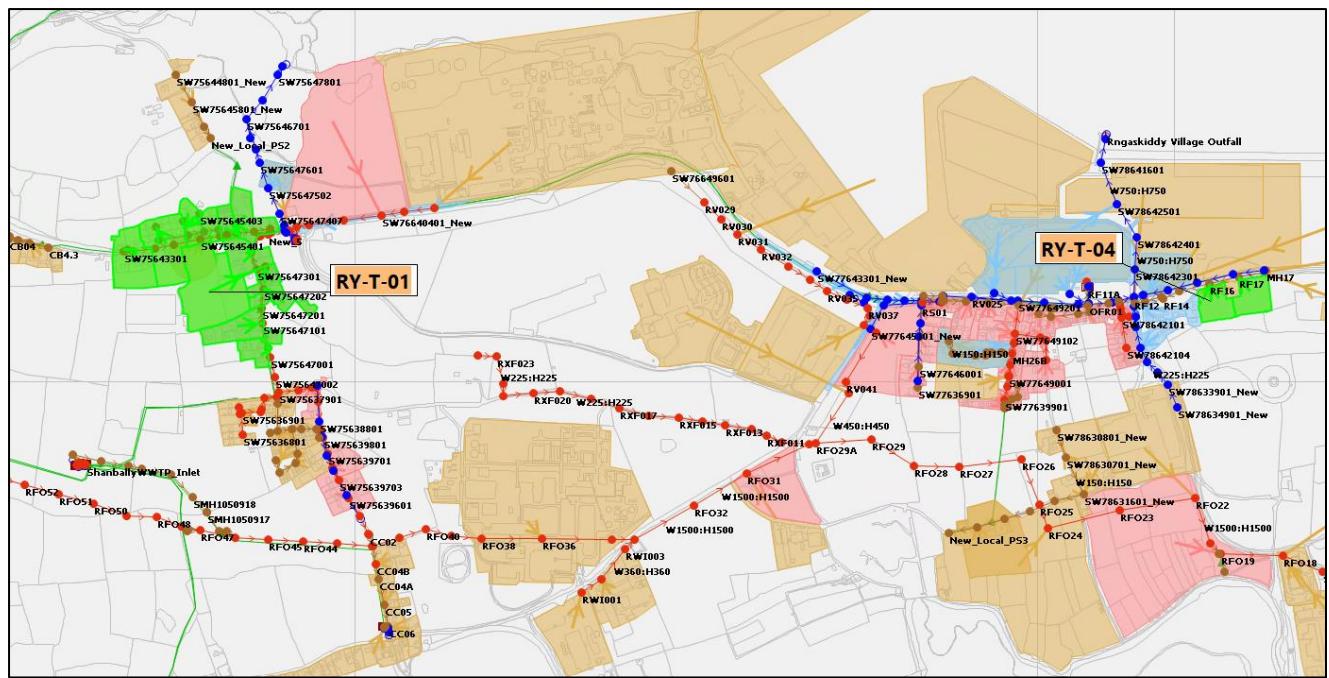


Figure 19: Development updates for Shanbally & Ringaskiddy 2030.

3. Ballincollig Development Details

Table 9: Development Updates for Ballincollig.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
BG-R-01	1,116	1,116	1,116	2.5	2.5	2.5	0.4	0.4	0.4
BG-R-03	1,382	1,382	1,382	3.0	3.0	3.0	0.5	0.5	0.5
BG-R-02	1,498	1,498	1,498	3.3	3.3	3.3	0.5	0.5	0.5
BG-DAP-R035	200	200	200	0.4	0.4	0.4	0.1	0.1	0.1
BG-DAP-R08	662	662	662	1.5	1.5	1.5	0.2	0.2	0.2
BG-MU-01	1,342	1,342	1,342	3.0	3.0	3.0	0.5	0.5	0.5
BG-R-04	403	403	403	0.9	0.9	0.9	0.1	0.1	0.1
BG-R-05	175	175	175	0.4	0.4	0.4	0.1	0.1	0.1

Totals	6,778	6,778	6,778	15l/s	15l/s	15l/s	2.4l/s	2.4l/s	2.4l/s
2055 Updates									
BG-LT-01	N/A	0	0	N/A	0	0	N/A	0.2	0.2
BG-LT-02	N/A	0	0	N/A	0	0	N/A	0.1	0.1
Totals	N/A	0	0	N/A	0	0	N/A	0.3l/s	0.3l/s

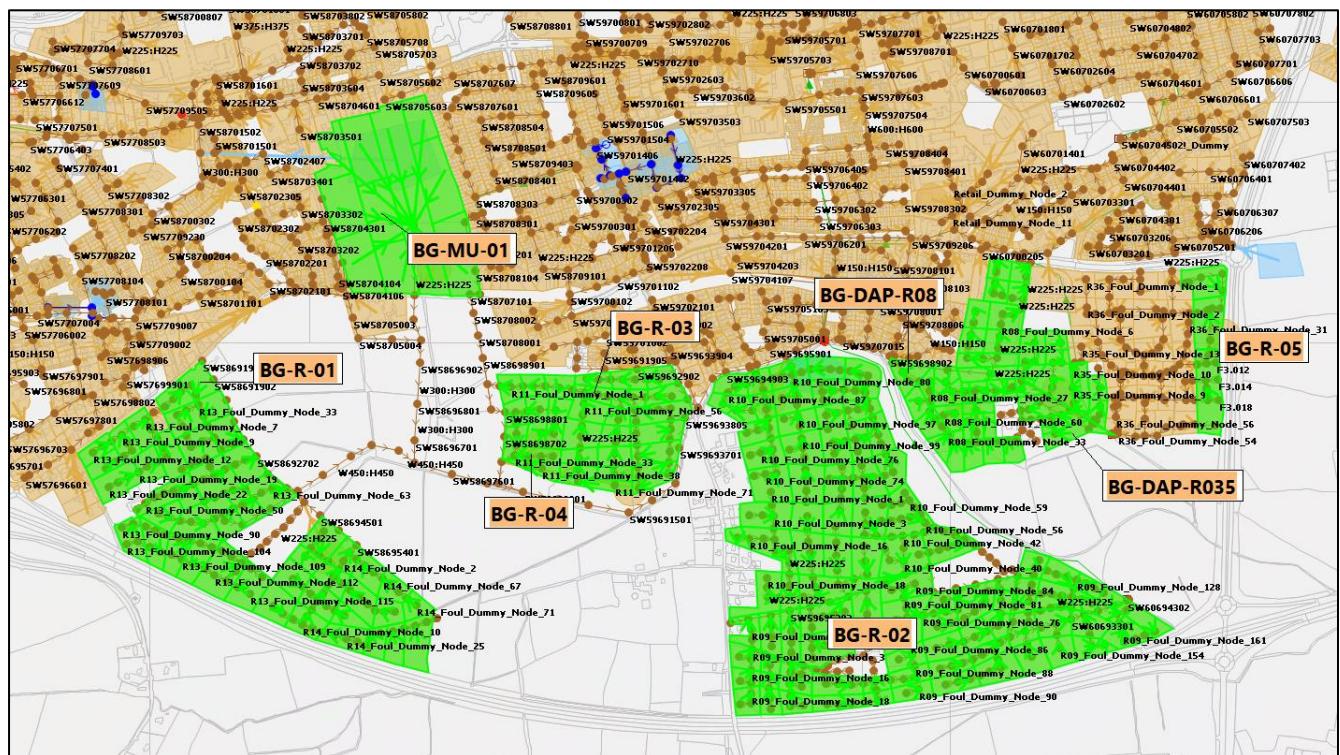


Figure 20: Development updates for Ballincollig 2030.

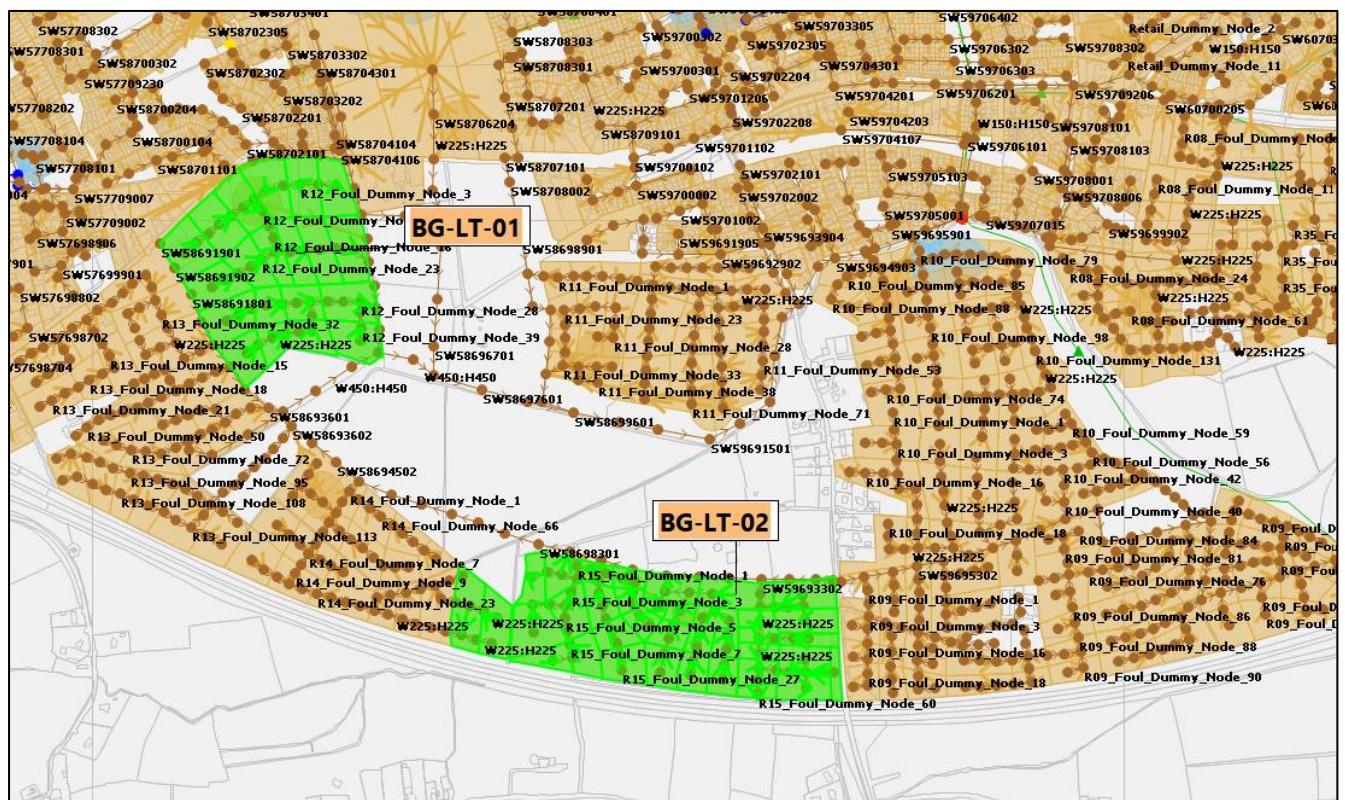


Figure 21: Development updates for Ballincollig 2055.

4. Carrigtwohill Development Details

Table 10: Development Updates for Carrigtwohill.

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
CT-R-11	405	405	405	0.9	0.9	0.9	0.1	0.1	0.1
CT-R-02	165	165	165	0.4	0.4	0.4	0.1	0.1	0.1
CT-R-04	925	925	925	2.0	2.0	2.0	0.3	0.3	0.3
CT-R-06	543	543	543	1.2	1.2	1.2	0.2	0.2	0.2
CT-R-07	555	555	555	1.2	1.2	1.2	0.2	0.2	0.2
CT-R-03	396	396	396	0.9	0.9	0.9	0.1	0.1	0.1

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
CT-R-01	1755	1755	1755	3.9	3.9	3.9	0.6	0.6	0.6
CT-RAP-15	200	397	397	0.4	0.9	0.9	0.1	0.1	0.1
Totals	4,944	5,141 (+197)	5,141	10.9/s	11.4l/s (+0.5l/s)	11.4l/s	1.7/s	1.7l/s	1.7l/s
2055 Development Details									
CT-RAP-18	N/A	178	178	N/A	0.4	0.4	N/A	0.1	0.1
CT-RFAP-05	N/A	616	616	N/A	1.4	1.4	N/A	0.2	0.2
CT-RFAP-09	N/A	212	667	N/A	0.5	1.5	N/A	0.1	0.2
CT-RFAP-08	N/A	1069	1069	N/A	2.3	2.3	N/A	0.4	0.4
Totals	N/A	2,075	2,530 (+455)	N/A	4.6l/s	5.6l/s (+1.0l/s)	N/A	0.8/s	0.9l/s (0.1l/s)
2080 Development Details									
CT-RFAP-10	N/A	N/A	254	N/A	N/A	0.6	N/A	N/A	0.1
CT-RFAP-12	N/A	N/A	635	N/A	N/A	1.4	N/A	N/A	0.2
Totals	N/A	N/A	889	N/A	N/A	2.0l/s	N/A	N/A	0.3l/s

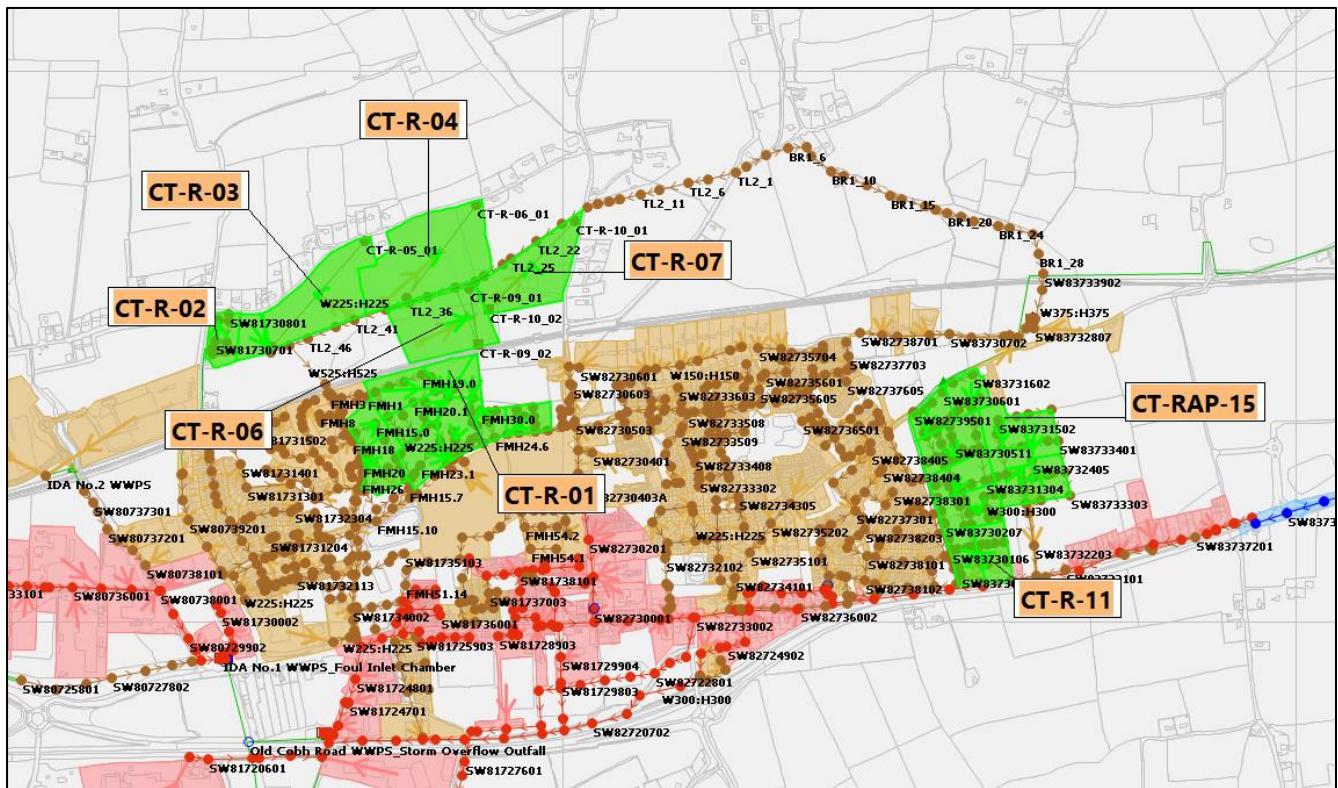


Figure 22: Development updates for Carrigtwohill 2030.

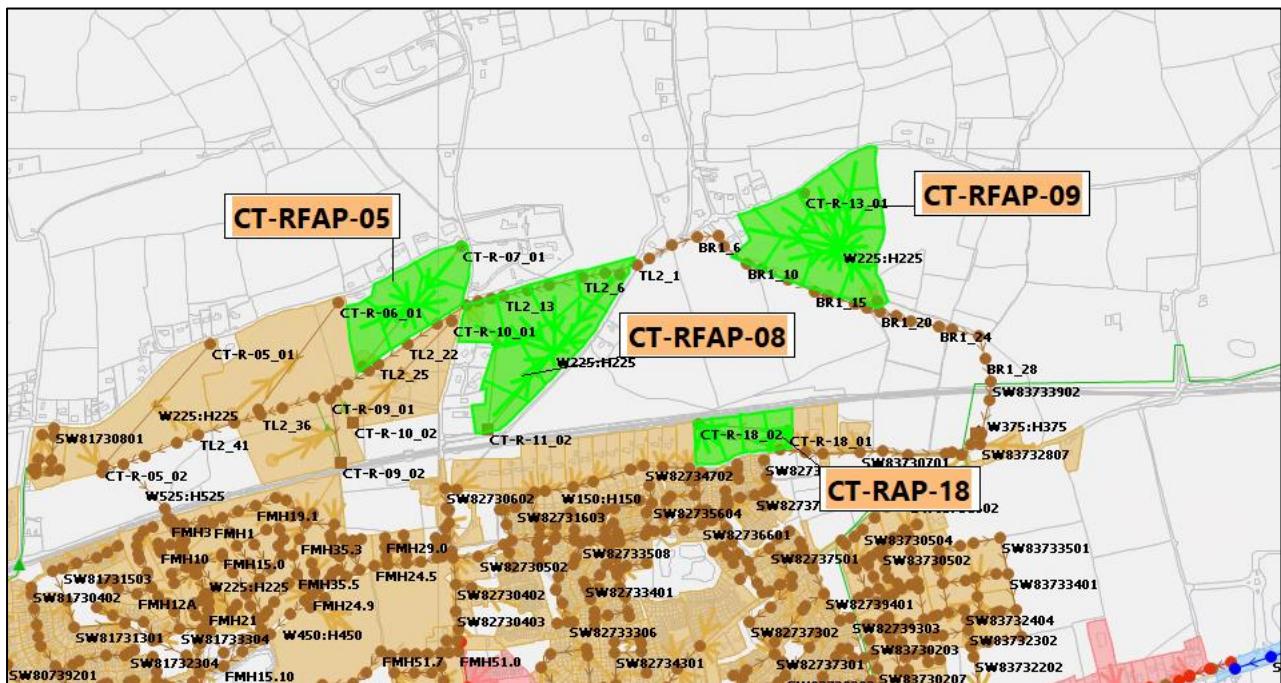


Figure 23: Development updates for Carrigtwohill 2055.

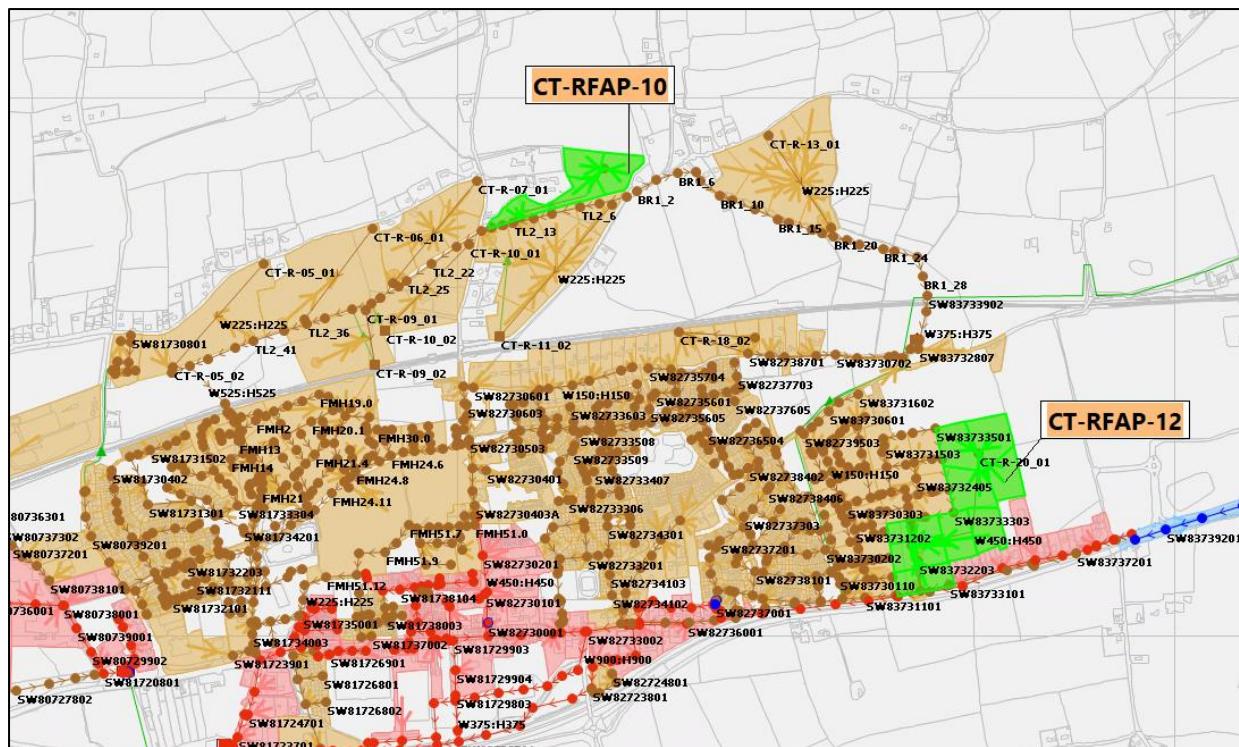


Figure 24: Development updates for Carrigtwohill 2080.

5. Midleton Development Details

Table 11: Development Updates for Midleton.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
MD-R-06	761	761	761	1.7	1.7	1.7	0.3	0.3	0.3
MD-R-10	434	643	751	1.0	1.4	1.7	0.2	0.2	0.3
MD-R-08	810	810	810	1.8	1.8	1.8	0.3	0.3	0.3
MD-R-07	775	775	775	1.7	1.7	1.7	0.3	0.3	0.3
MD-R-04	1,347	1,347	1,566	3.0	3.0	3.4	0.5	0.5	0.6
MD-R-05	392	392	459	0.9	0.9	1.0	0.1	0.1	0.2
MD-R-03	197	197	230	0.4	0.4	0.5	0.1	0.1	0.1

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
MD-R-01	259	259	302	0.6	0.6	0.7	0.1	0.1	0.1
MD-R-02	678	678	788	1.5	1.5	1.7	0.2	0.2	0.3
R02_1	17.02	17.02	17.02	0.0	0.0	0.0	0.0	0.0	0.0
R02_2	10.42	10.42	10.42	0.0	0.0	0.0	0.0	0.0	0.0
R02_3	10.68	10.68	10.68	0.0	0.0	0.0	0.0	0.0	0.0
R02_4	8.6	8.6	8.6	0.0	0.0	0.0	0.0	0.0	0.0
R02_5	12.85	12.85	12.85	0.0	0.0	0.0	0.0	0.0	0.0
R02_6	10.94	10.94	10.94	0.0	0.0	0.0	0.0	0.0	0.0
R02_7	11.38	11.38	11.38	0.0	0.0	0.0	0.0	0.0	0.0
R05_1	23.53	23.53	23.53	0.1	0.1	0.1	0.0	0.0	0.0
R05_10	6.22	6.22	6.22	0.0	0.0	0.0	0.0	0.0	0.0
R05_11	27.5	27.5	27.5	0.1	0.1	0.1	0.0	0.0	0.0
R05_12	35.97	35.97	35.97	0.1	0.1	0.1	0.0	0.0	0.0
R05_13	10.43	10.43	10.43	0.0	0.0	0.0	0.0	0.0	0.0
R05_14	8.06	8.06	8.06	0.0	0.0	0.0	0.0	0.0	0.0
R05_15	15.05	15.05	15.05	0.0	0.0	0.0	0.0	0.0	0.0
R05_2	16.24	16.24	16.24	0.0	0.0	0.0	0.0	0.0	0.0
R05_3	20.33	20.33	20.33	0.0	0.0	0.0	0.0	0.0	0.0
R05_4	17.48	17.48	17.48	0.0	0.0	0.0	0.0	0.0	0.0
R05_5	7.82	7.82	7.82	0.0	0.0	0.0	0.0	0.0	0.0

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
R05_6	14.28	14.28	14.28	0.0	0.0	0.0	0.0	0.0	0.0
R05_7	19.32	19.32	19.32	0.0	0.0	0.0	0.0	0.0	0.0
R05_8	11.73	11.73	11.73	0.0	0.0	0.0	0.0	0.0	0.0
R05_9	9.01	9.01	9.01	0.0	0.0	0.0	0.0	0.0	0.0
R32_1	19.43	19.43	19.43	0.0	0.0	0.0	0.0	0.0	0.0
R32_2	22.37	22.37	22.37	0.0	0.0	0.0	0.0	0.0	0.0
R32_3	18.19	18.19	18.19	0.0	0.0	0.0	0.0	0.0	0.0
R32_4	29.72	29.72	29.72	0.1	0.1	0.1	0.0	0.0	0.0
R32_5	23.05	23.05	23.05	0.1	0.1	0.1	0.0	0.0	0.0
R32_6	37.51	37.51	37.51	0.1	0.1	0.1	0.0	0.0	0.0
R32_7	27.17	27.17	27.17	0.1	0.1	0.1	0.0	0.0	0.0
R34_1	13.43	13.43	13.43	0.0	0.0	0.0	0.0	0.0	0.0
R34_2	15.84	15.84	15.84	0.0	0.0	0.0	0.0	0.0	0.0
R34_3	45.76	45.76	45.76	0.1	0.1	0.1	0.0	0.0	0.0
R34_4	17.32	17.32	17.32	0.0	0.0	0.0	0.0	0.0	0.0
R34_5	19.64	19.64	19.64	0.0	0.0	0.0	0.0	0.0	0.0
R35_1	39.05	39.05	39.05	0.1	0.1	0.1	0.0	0.0	0.0
R35_10	14.16	14.16	14.16	0.0	0.0	0.0	0.0	0.0	0.0
R35_2	38.83	38.83	38.83	0.1	0.1	0.1	0.0	0.0	0.0
R35_3	23.46	23.46	23.46	0.1	0.1	0.1	0.0	0.0	0.0

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055
R35_4	16.45	16.45	16.45	0.0	0.0	0.0	0.0	0.0	0.0
R35_5	21.38	21.38	21.38	0.0	0.0	0.0	0.0	0.0	0.0
R35_6	25.17	25.17	25.17	0.1	0.1	0.1	0.0	0.0	0.0
R35_7	34.61	34.61	34.61	0.1	0.1	0.1	0.0	0.0	0.0
R35_8	17.88	17.88	17.88	0.0	0.0	0.0	0.0	0.0	0.0
R35_9	20.17	20.17	20.17	0.0	0.0	0.0	0.0	0.0	0.0
R36_1	21.89	21.89	21.89	0.0	0.0	0.0	0.0	0.0	0.0
R36_2	31.45	31.45	31.45	0.1	0.1	0.1	0.0	0.0	0.0
R36_3	17.9	17.9	17.9	0.0	0.0	0.0	0.0	0.0	0.0
R39_1	13.27	13.27	13.27	0.0	0.0	0.0	0.0	0.0	0.0
R39_2	14.89	14.89	14.89	0.0	0.0	0.0	0.0	0.0	0.0
R39_3	13.54	13.54	13.54	0.0	0.0	0.0	0.0	0.0	0.0
R39_4	15.63	15.63	15.63	0.0	0.0	0.0	0.0	0.0	0.0
R40_1	8.22	8.22	8.22	0.0	0.0	0.0	0.0	0.0	0.0
Totals	6,655	6,864 (+209)	7,444 (+580)	14l/s	14.4l/s (+0.4l/s)	15.6l/s (+1.2l/s)	2.1l/s	2.1l/s	2.5l/s (+0.4l/s)
2055 Developments									
MD-RAP-15	N/A	189	219	N/A	0.4	0.5	N/A	0.1	0.1
MD-R-16	N/A	551	637	N/A	1.2	1.4	N/A	0.2	0.2
MD-RFAP-20	N/A	421	489	N/A	0.9	1.1	N/A	0.1	0.2
MD-RFAP-09	N/A	143	167	N/A	0.3	0.4	N/A	0.1	0.1

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
Zoning ID									
MD-R-11	N/A	529	616	N/A	1.2	1.4	N/A	0.2	0.2
MD-R-13	N/A	805	934	N/A	1.8	2.1	N/A	0.3	0.3
MD-R-12	N/A	292	340	N/A	0.6	0.7	N/A	0.1	0.1
MD-RAP-18	N/A	165	192	N/A	0.4	0.4	N/A	0.1	0.1
MD-RAP-17	N/A	281	324	N/A	0.6	0.7	N/A	0.1	0.1
MD-R-24	N/A	58	94	N/A	0.1	0.2	N/A	0.0	0.0
MD-R-14	N/A	162	189	N/A	0.4	0.4	N/A	0.1	0.1
MD-RFAP-19	N/A	248	289	N/A	0.5	0.6	N/A	0.1	0.1
MD-RAP-21	N/A	699	810	N/A	1.5	1.8	N/A	0.2	0.3
MD-RAP-22	N/A	142	167	N/A	0.3	0.4	N/A	0.0	0.1
Totals	N/A	4,685	5,467 (+782)	N/A	10.2l/s	12.1l/s (+1.9l/s)	N/A	1.7l/s	2.0l/s (0.3l/s)
2080 Developments									
MD-X-01	N/A	N/A	481	N/A	N/A	1.1	N/A	N/A	0.2
MD-X-02	N/A	N/A	324	N/A	N/A	0.7	N/A	N/A	0.1
MD-R-25	N/A	N/A	193	N/A	N/A	0.4	N/A	N/A	0.1
MD-RR-01	N/A	N/A	292	N/A	N/A	0.6	N/A	N/A	0.1
MD-R-26	N/A	N/A	832	N/A	N/A	1.8	N/A	N/A	0.3
MD-RFAP-23	N/A	N/A	188	N/A	N/A	0.4	N/A	N/A	0.1
Totals	N/A	N/A	2,310	N/A	N/A	5.0l/s	N/A	N/A	0.9l/s

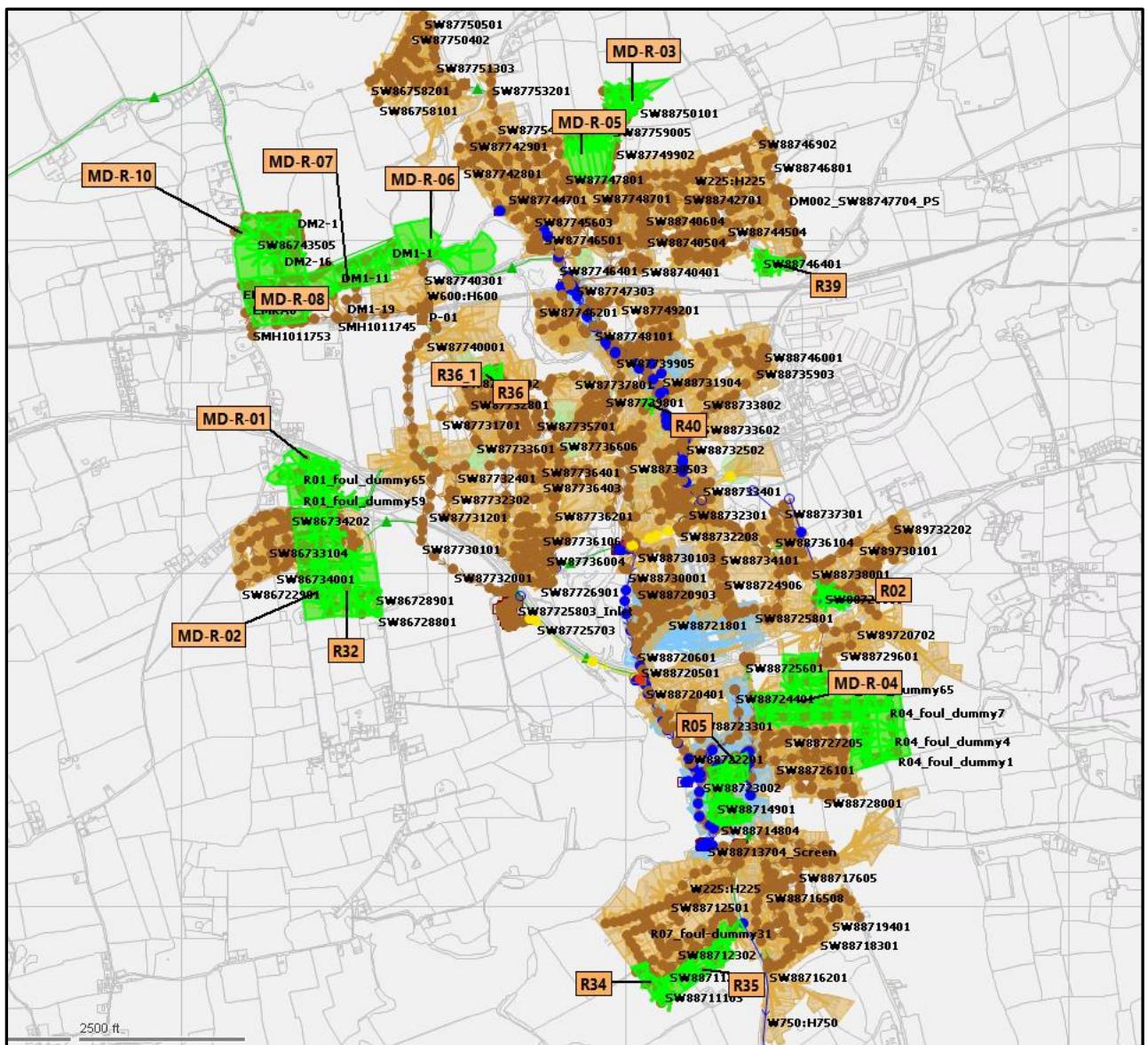


Figure 25: Development updates for Midleton 2030.

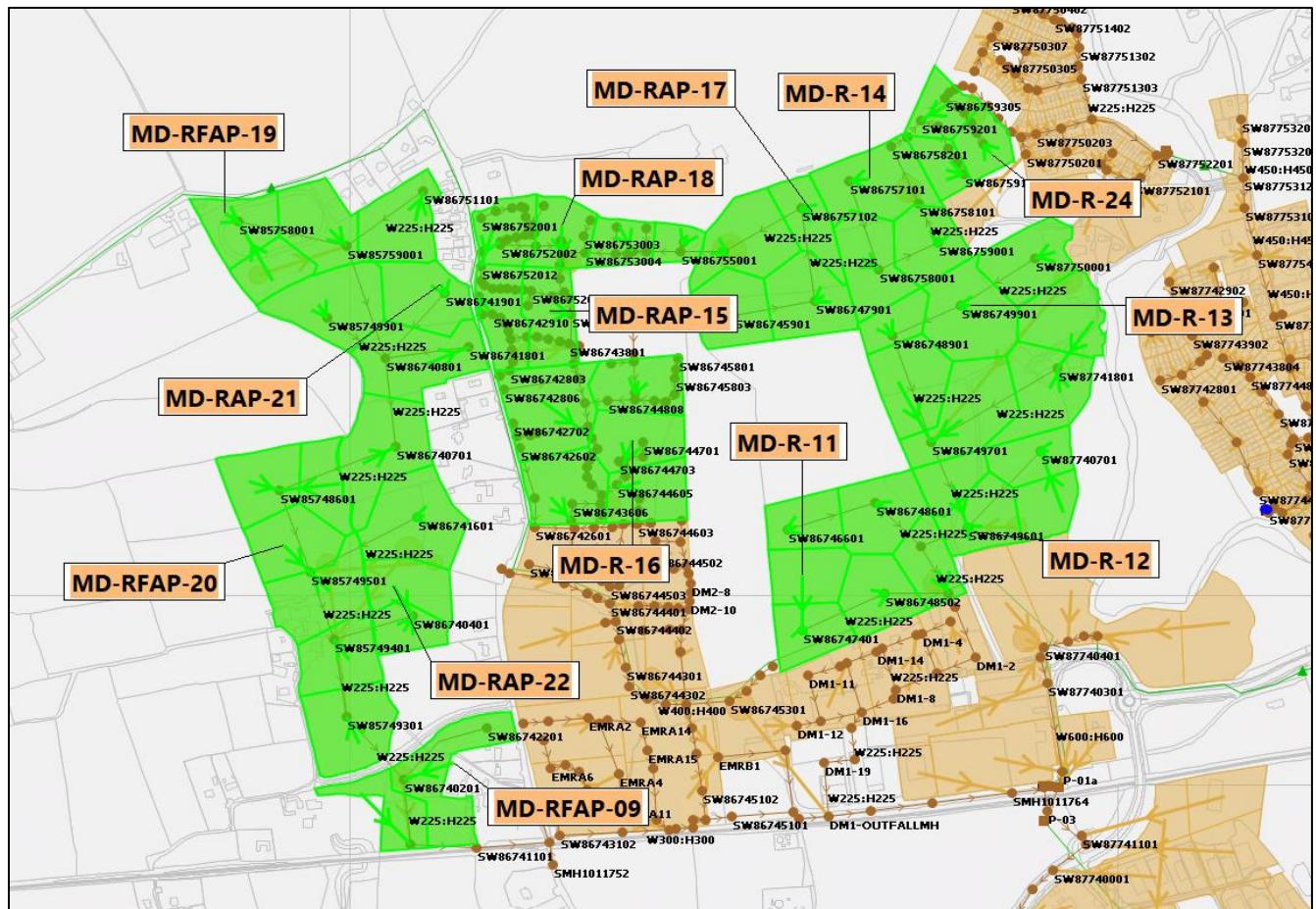


Figure 26: Development updates for Midleton 2055.

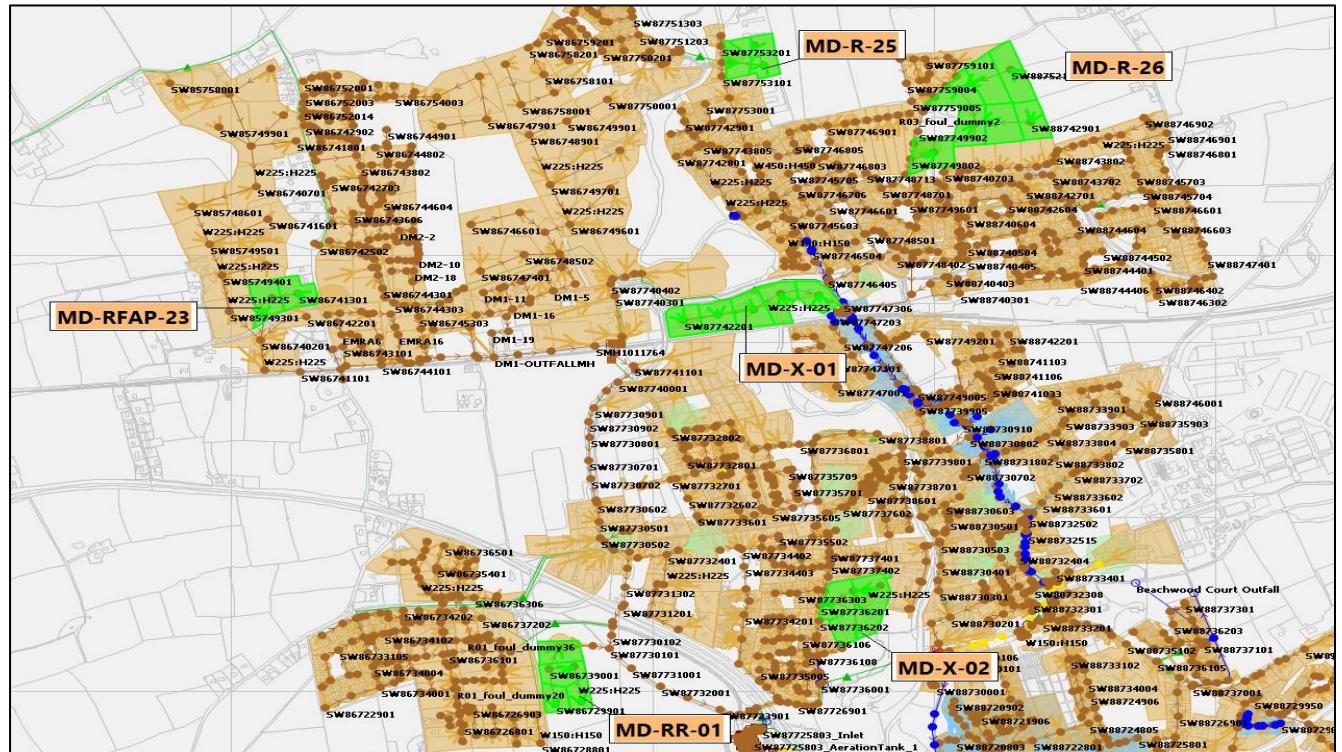


Figure 27: Development updates for Midleton 2080.

6. Cork Settlements Development Details

Table 12: Development Updates for Ballincurrig and Lisgoold.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
BC-RD	20	122	128	0.0	0.3	0.3	0.0	0.0	0.0
LS-RD	74	161	224	0.2	0.4	0.5	0.0	0.1	0.1
Totals	94	283	352	0.2l/s	0.7l/s	0.8l/s	0.0l/s	0.1l/s	0.1l/s

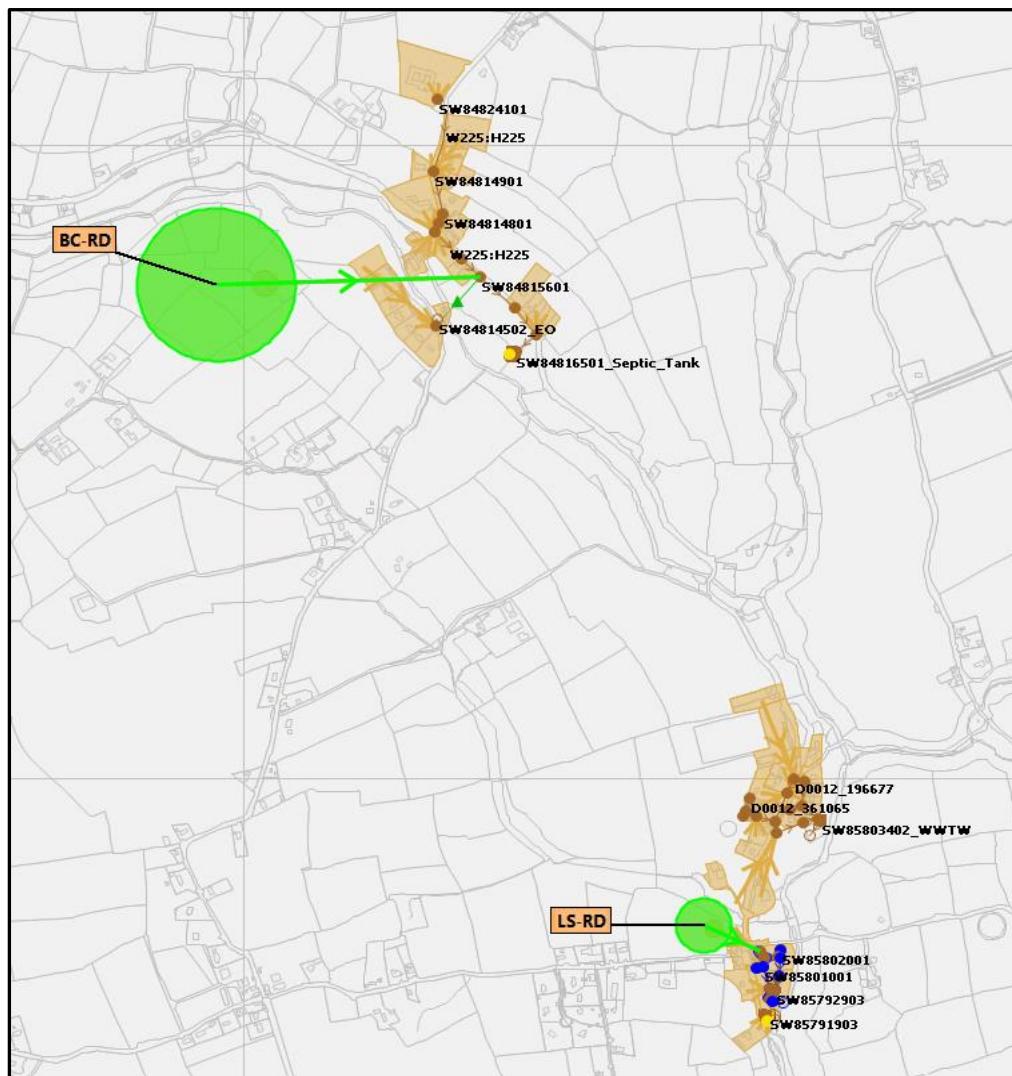


Figure 28: Development Updates for Ballincurrig and Lisgoold.

Table 13: Development Updates for Ballygarvan.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
Ballygarvan_X-01	141	253	353	0.3	0.6	0.8	0.0	0.1	0.1
Totals	141	253	353	0.3l/s	0.6l/s	0.8l/s	0.0l/s	0.1l/s	0.1l/s

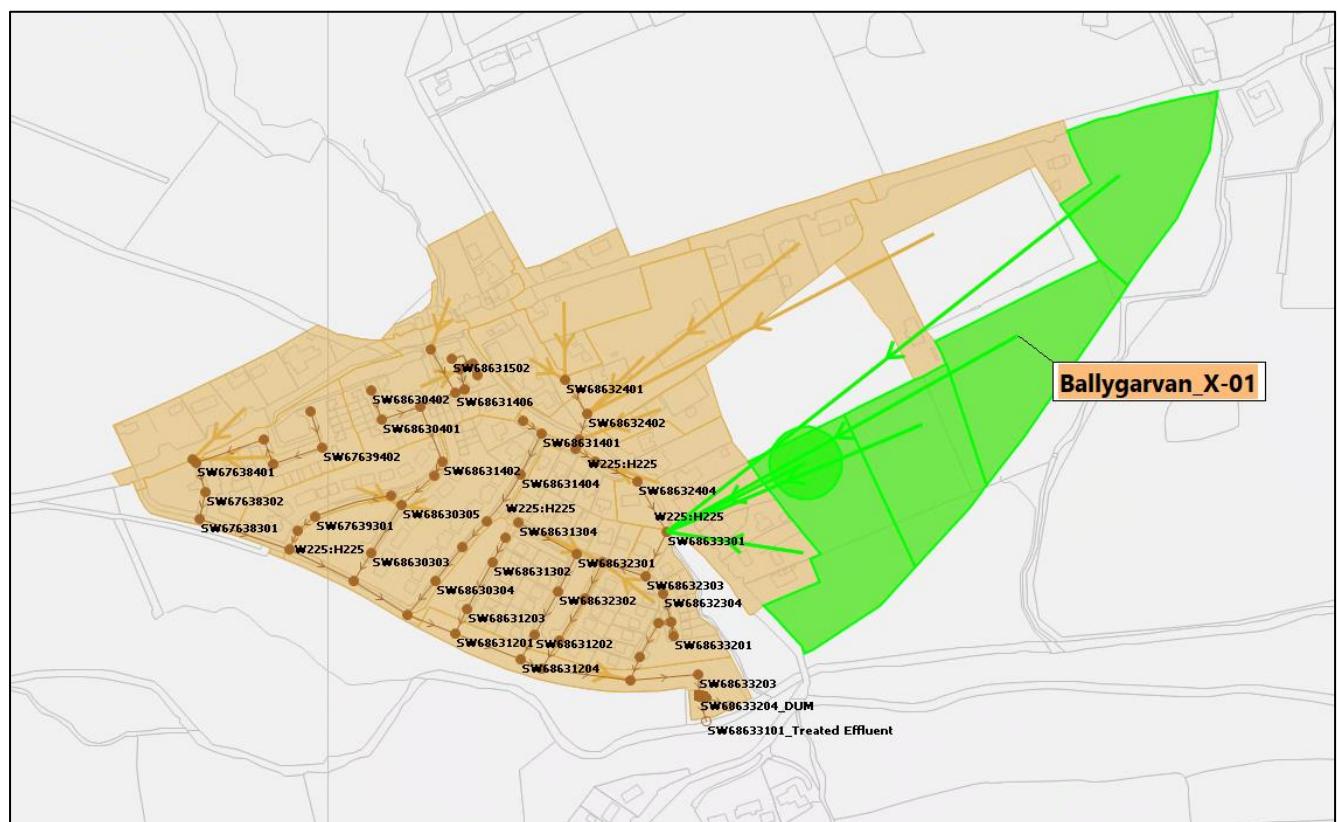


Figure 29: Development Updates for Ballygarvan.

Table 14: Development Updates for Ballymore.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080

2030 Development Details									
BM-RD	23	67	108	0.1	0.1	0.2	0.0	0.0	0.0
Totals	23	67	108	0.1l/s	0.1l/s	0.2l/s	0.0l/s	0.0l/s	0.0l/s

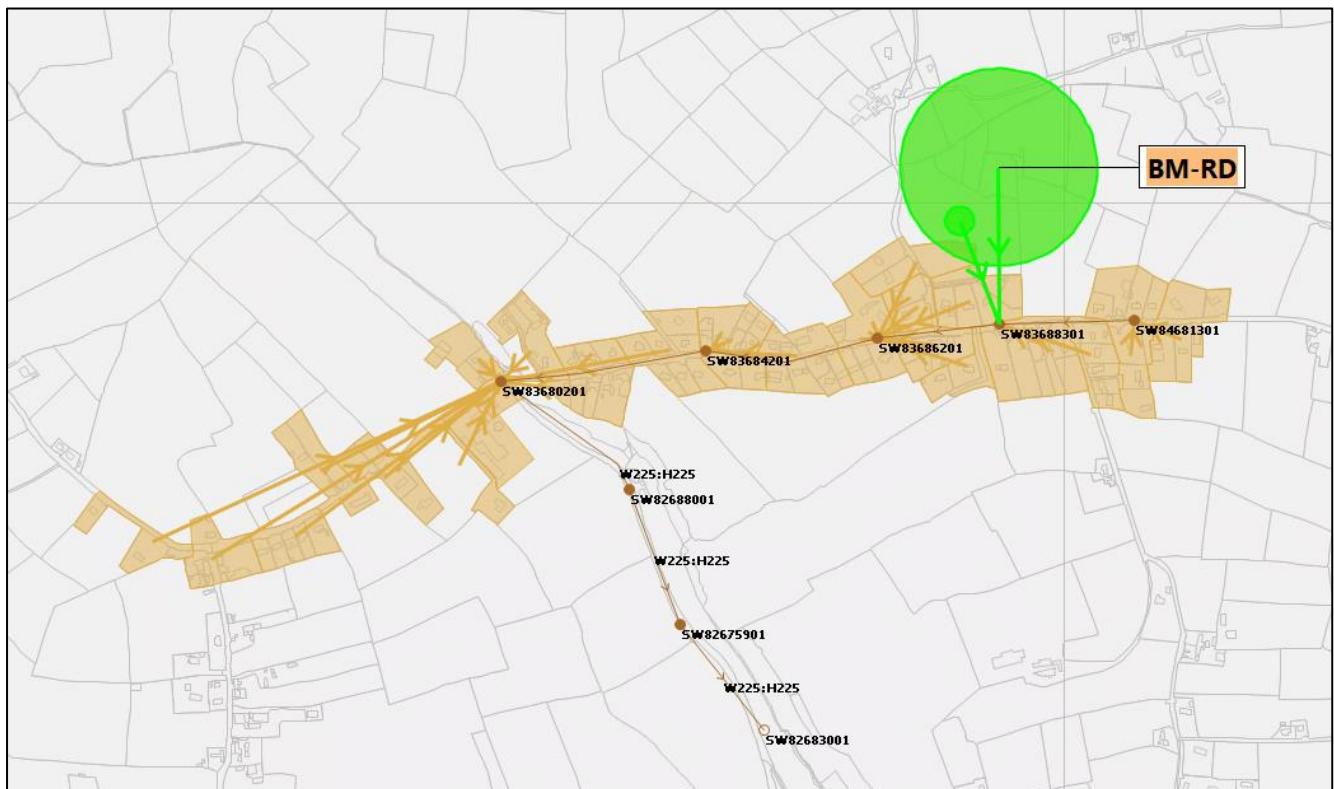


Figure 30: Development Updates for Ballymore.

Table 15: Development Updates for Berrings.

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055
2030 Development Details									
BR-RD	35	101	163	0.1	0.2	0.4	0.0	0.0	0.1
Totals	35	101	163	0.1l/s	0.2l/s	0.4l/s	0.0l/s	0.0l/s	0.1l/s

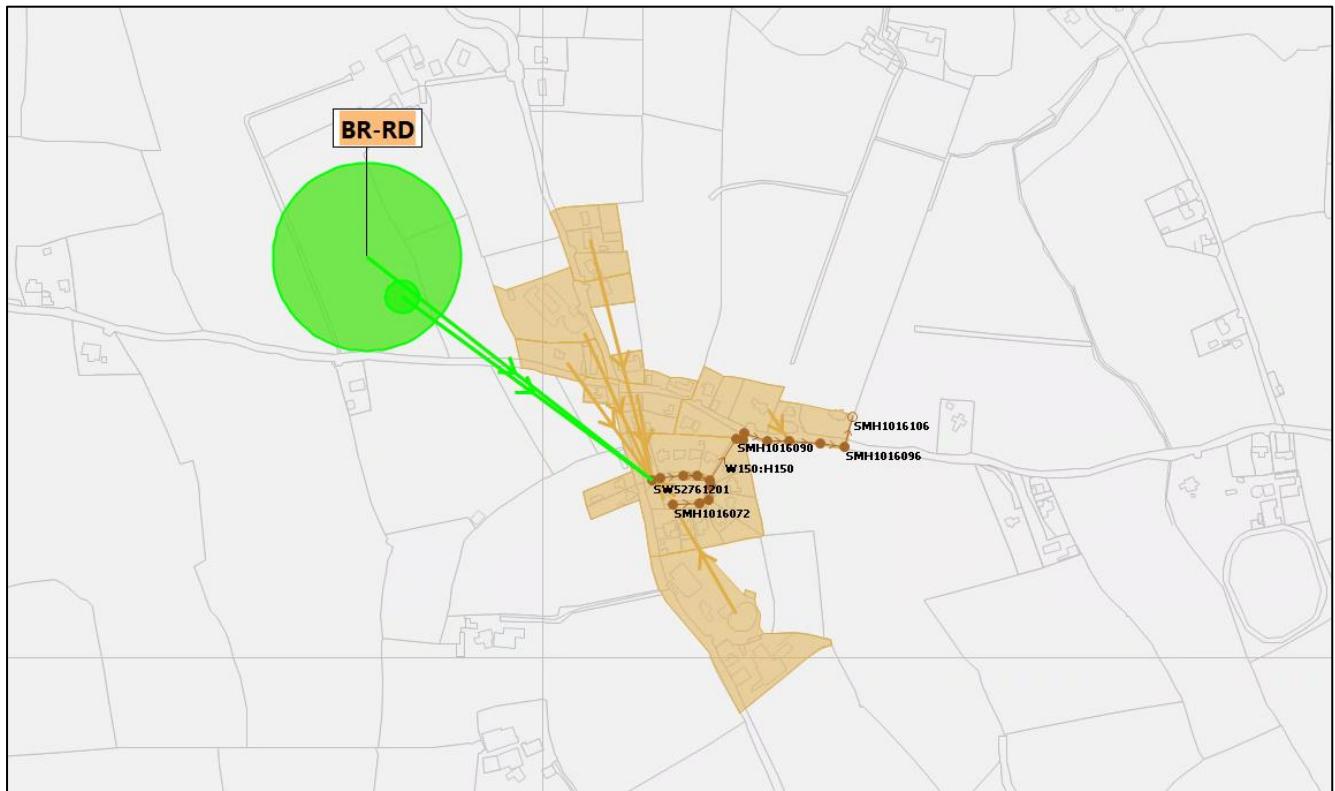


Figure 31: Development Updates for Barrings.

Table 16: Development Updates for Blarney and Kerry Pike.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
BL-R-05	702	1811	1811	1.5	4.0	4.0	0.2	0.6	0.6
BL-R-03	356	356	356	0.8	0.8	0.8	0.1	0.1	0.1
BL-R-02	657	657	657	1.4	1.4	1.4	0.2	0.2	0.2
BL-R-01	1245	1245	1245	2.7	2.7	2.7	0.4	0.4	0.4
BL-R-04	176	176	176	0.4	0.4	0.4	0.1	0.1	0.1
KP-R-01	109	244	244	0.2	0.5	0.5	0.0	0.1	0.1

TR-R-01	493	493	493	1.1	1.1	1.1	0.2	0.2	0.2
TR-R-02	139	139	139	0.3	0.3	0.3	0.0	0.0	0.0
TR-LT-01	239	364	364	0.5	0.8	0.8	0.1	0.1	0.1
Totals	4,116	5,485 ^(+1,521)	5,485	8.9l/s	12.0l/s	12.0l/s	1.3l/s	1.3l/s	1.8l/s
2055 Development Details									
BL-LT-01	N/A	3682	5544	N/A	8.1	12.2	N/A	1.3	1.9
BL-USC-01	N/A	489	489	N/A	1.1	1.1	N/A	0.2	0.2
BL-MU-01	N/A	341	341	N/A	0.7	0.7	N/A	0.1	0.1
KerryPikeDummyRDZ	N/A	111	206	N/A	0.2	0.5	N/A	0.0	0.1
TowerDummyRDZ	N/A	1545	2109	N/A	3.4	4.6	N/A	0.5	0.7
Totals	N/A	6,168	8,689 ^(+1,521)	N/A	13.5l/s	19.1l/s ^(+5.6l/s)	N/A	2.1l/s	3.0l/s ^(0.9l/s)

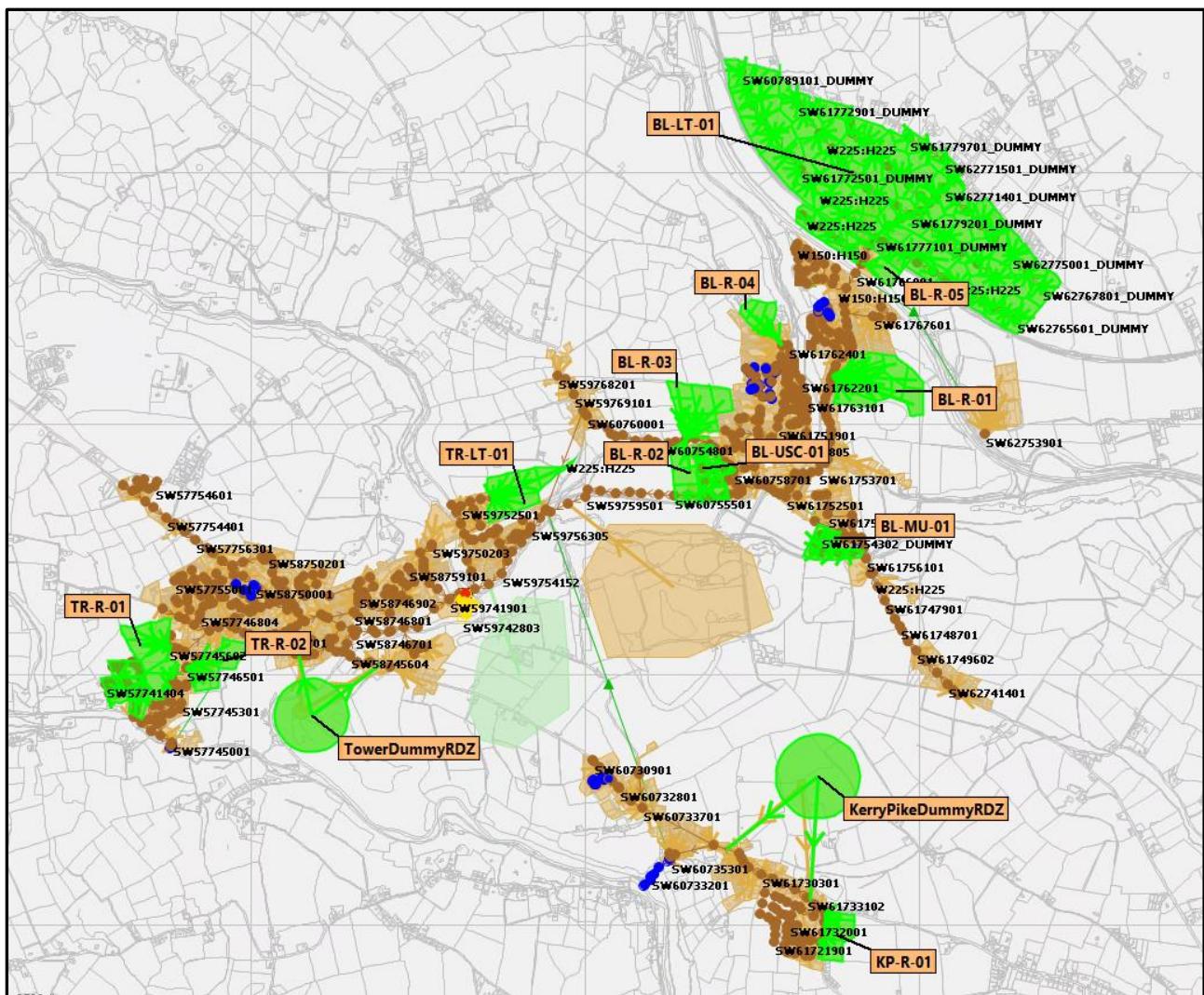


Figure 32: Development Updates for Blarney and Kerry Pike.

Table 17: Development Updates for Carrignavar.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
CN-RD	117	265	372	0.3	0.6	0.8	0.0	0.1	0.1
Totals	117	265 (+148)	372 (+107)	0.3l/s	0.6l/s (+0.3l/s)	0.8l/s (+0.2l/s)	0.0l/s	0.1l/s (+0.1l/s)	0.1l/s

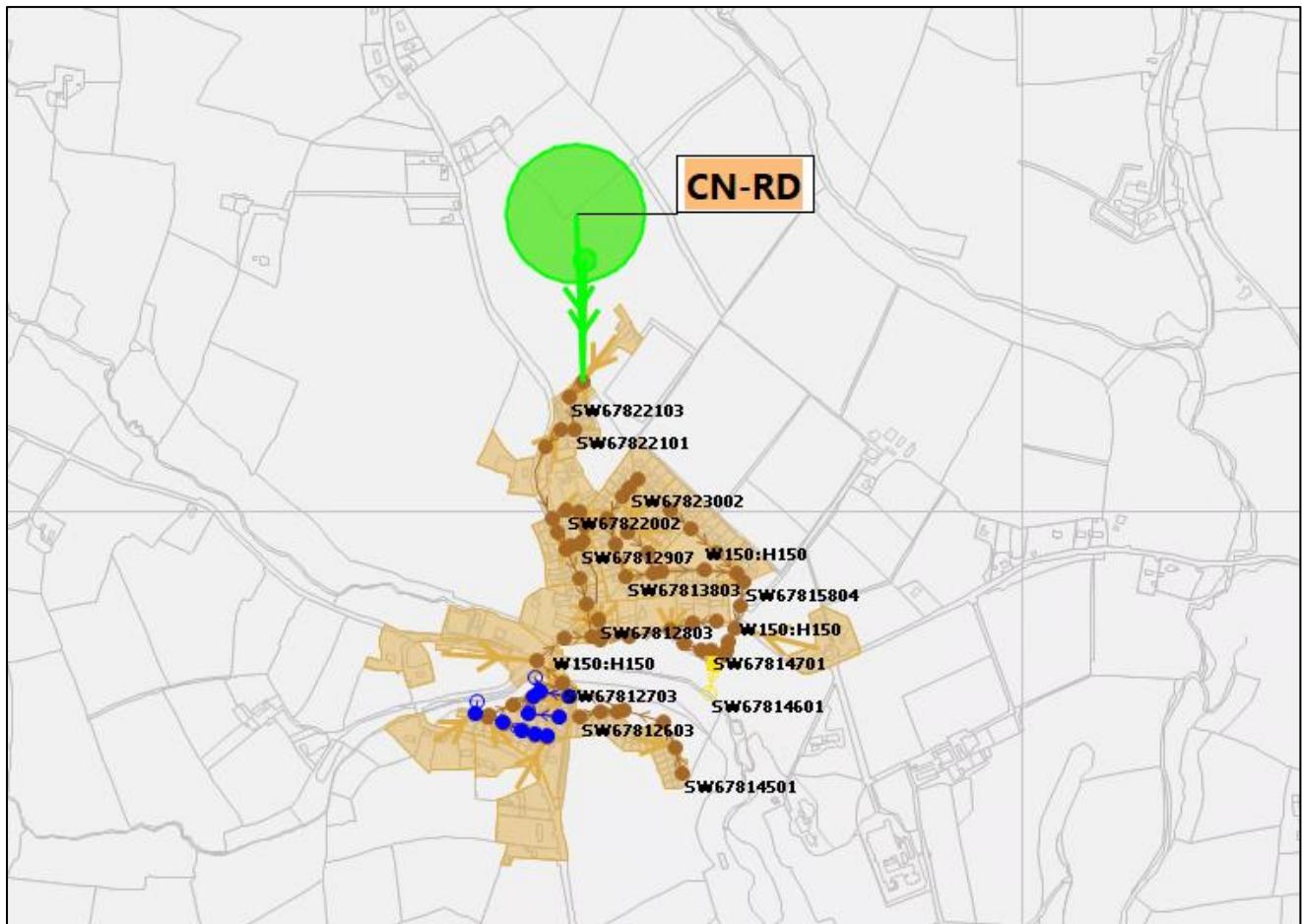


Figure 33: Development Updates for Carrignavar.

Table 18: Development Updates for Cloyne.

Zoning ID	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
2030 Development Details									
CY-R-02	172	300	300	0.4	0.7	0.7	0.1	0.1	0.1
CY-R-03	164	365	365	0.4	0.8	0.8	0.1	0.1	0.1
CY-RAP-01	95	165	165	0.2	0.4	0.4	0.0	0.1	0.1
Totals	431	830	830	1.0l/s	1.9l/s	1.9l/s	0.2l/s	0.3l/s	0.3l/s

		(+399)			(+0.9l/s)			(+0.1l/s)	
2055 Development Details									
CY-RD	N/A	62	411	N/A	0.1	0.9	N/A	0.0	0.1
Totals	N/A	62	411 (+349)	N/A	0.1l/s	0.9/s (+0.8l/s)	N/A	0.0/s	0.1/s (+0.1l/s)

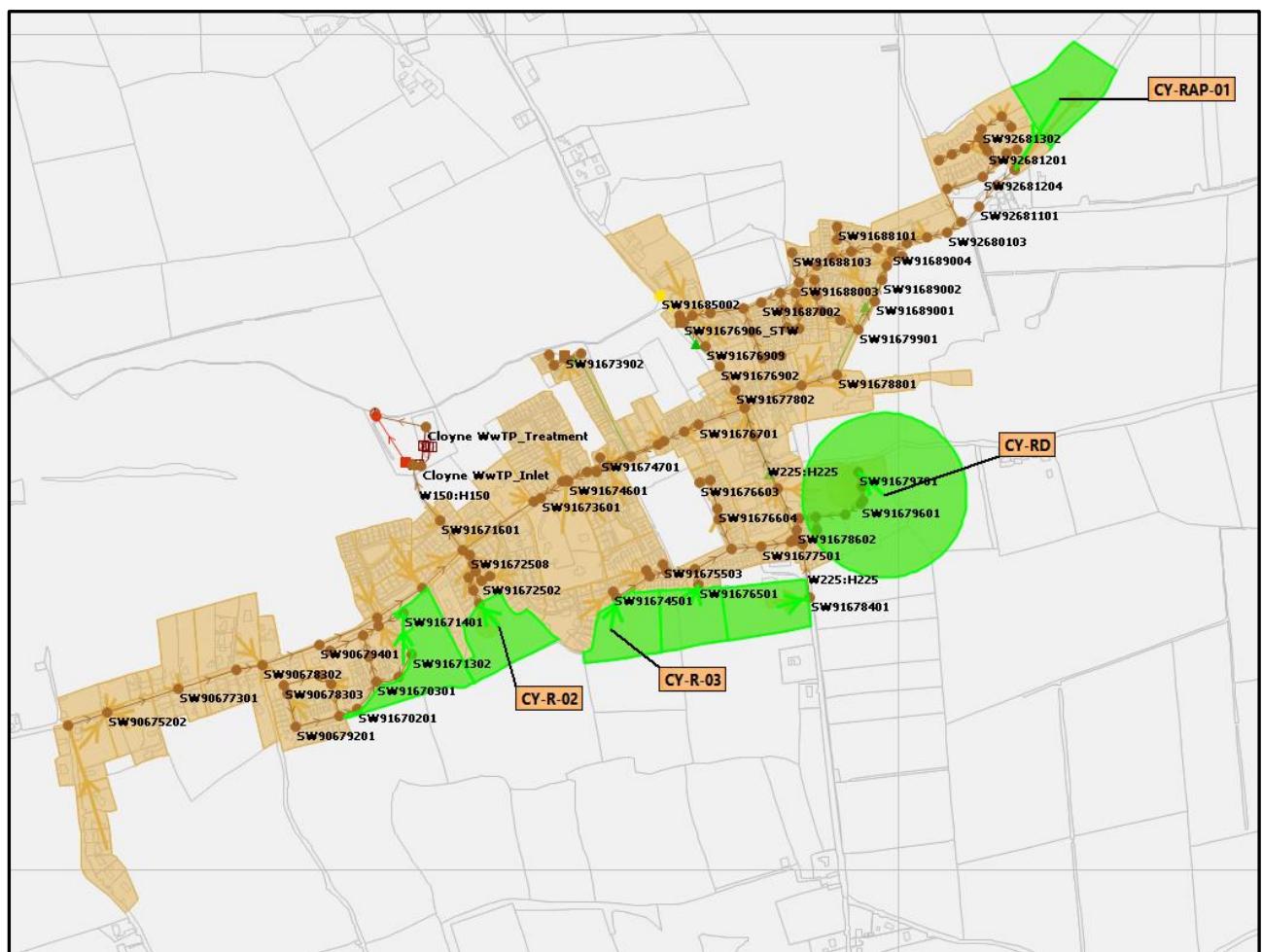


Figure 34: Development Updates for Cloyne.

Table 19: Development Updates for Coole East.

	Population			Total Zone Flows (l/s)			Trade Flows (l/s)		
	2030	2055	2080	2030	2055	2080	2030	2055	2080
Zoning ID	2030	2055	2080	2030	2055	2080	2030	2055	2080

2030 Development Details									
CT-RD	30	111	166	0.1	0.2	0.4	0.0	0.0	0.1
Totals	30	111	166	0.1l/s	0.2l/s	0.4l/s	0.0l/s	0.0l/s	0.1l/s

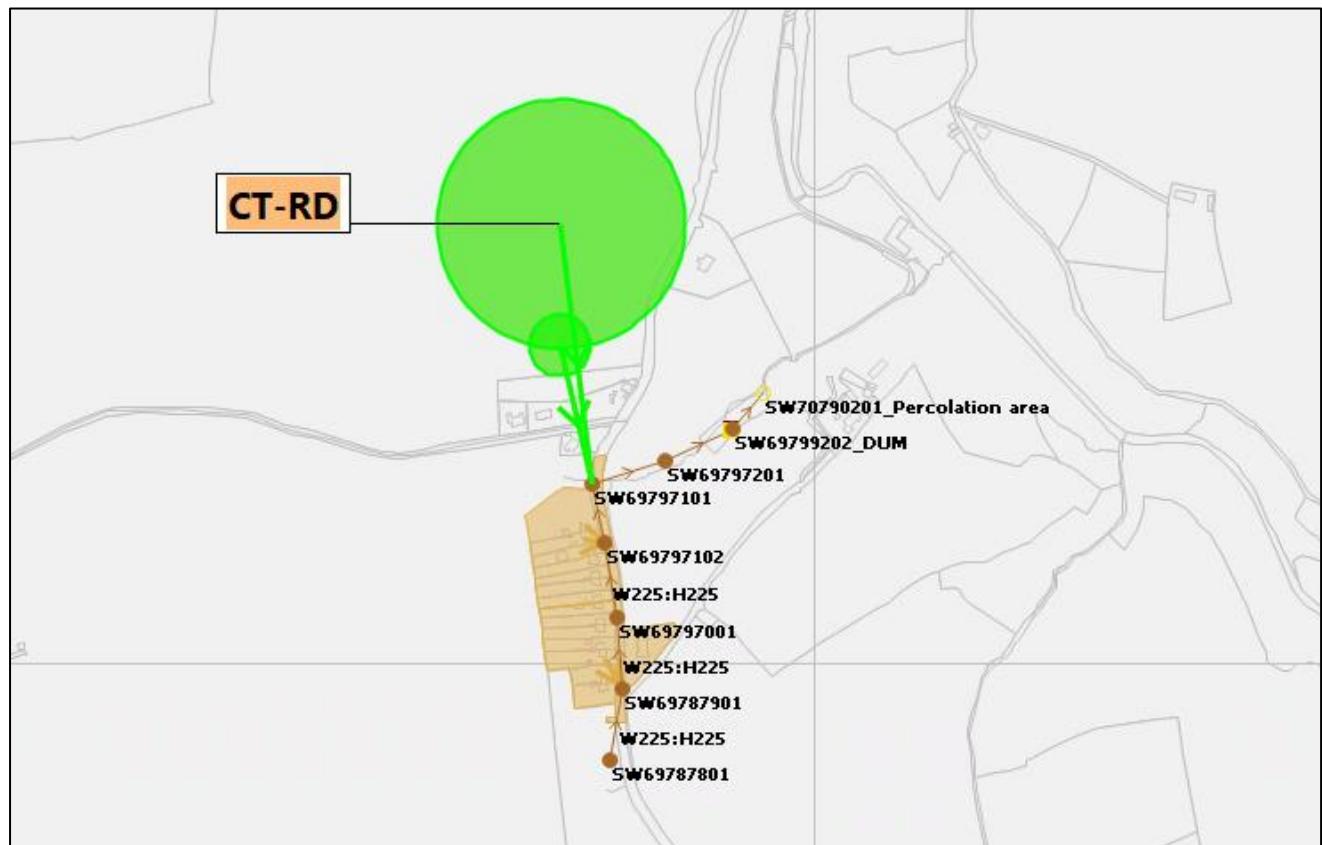


Figure 35: Development Updates for Coole East.

Table 20: Development Updates for Courtbrack.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
CK-RD	36	105	168	0.1	0.2	0.4	0.0	0.0	0.1

Totals	36	105 (+69)	168 (+63)	0.1l/s	0.1l/s (+0.1l/s)	0.4l/s (+0.2l/s)	0l/s	0l/s	0.1l/s (+0.1l/s)
--------	----	--------------	--------------	--------	---------------------	---------------------	------	------	---------------------

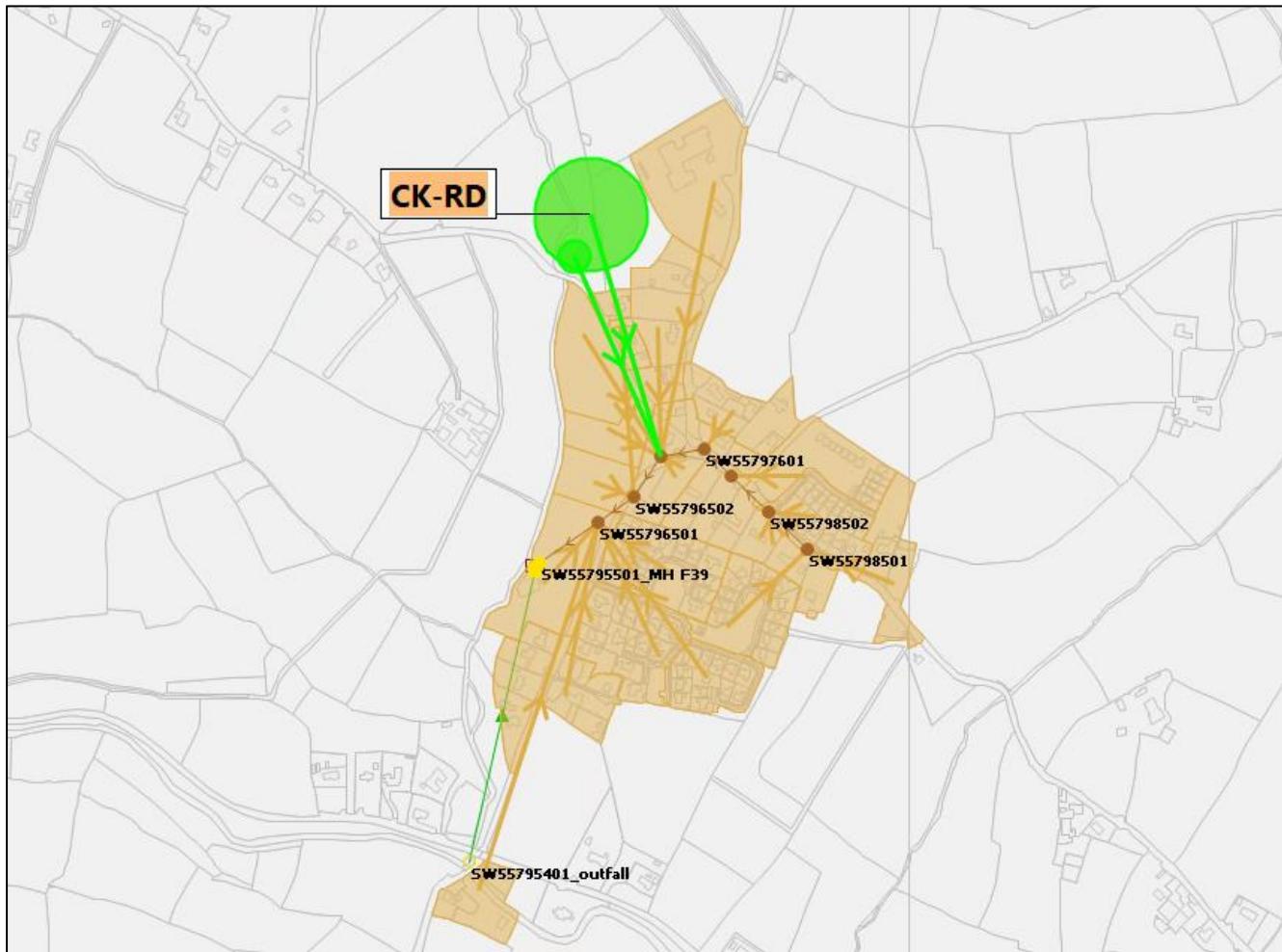


Figure 36: Development Updates for Courtbrack.

Table 21: Development Updates for Dripsey/Model Village.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
ML-RD	148	221	289	0.3	0.5	0.6	0.1	0.1	0.1

Totals	148	221 (+73)	289 (+68)	0.3l/s	0.5l/s (+0.2l/s)	0.6l/s (+0.1l/s)	0.1l/s	0.1l/s	0.1l/s
--------	-----	--------------	--------------	--------	---------------------	---------------------	--------	--------	--------

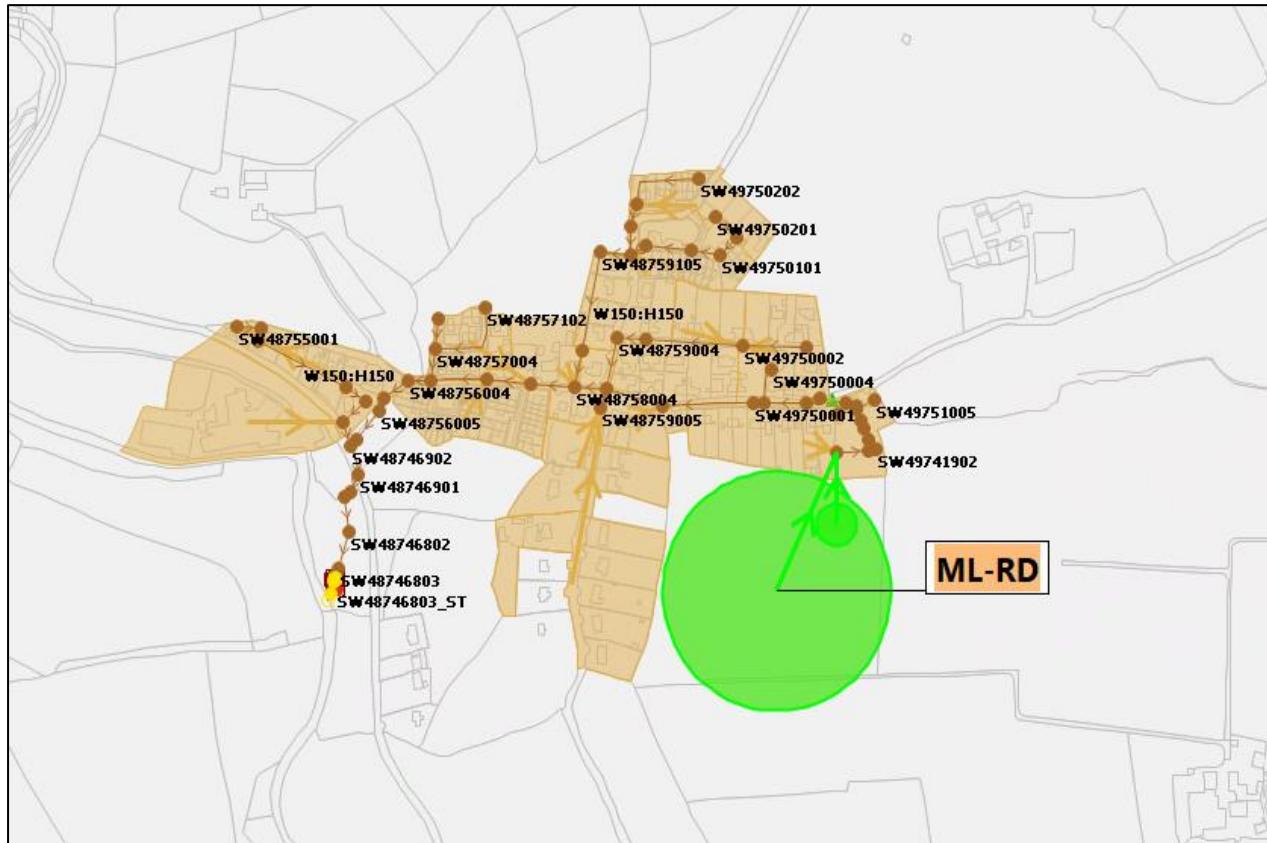


Figure 37: Development Updates for Dripsey/Model Village.

Table 22: Development Updates for Grenagh.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
Grenagh_X-01	57	213	334	0.1	0.5	0.7	0.0	0.1	0.1
Totals	57	213 (+156)	334 (+121)	0.1l/s	0.5l/s (+0.4l/s)	0.7l/s (+0.2l/s)	0l/s	0.1l/s (+0.1l/s)	0.1l/s

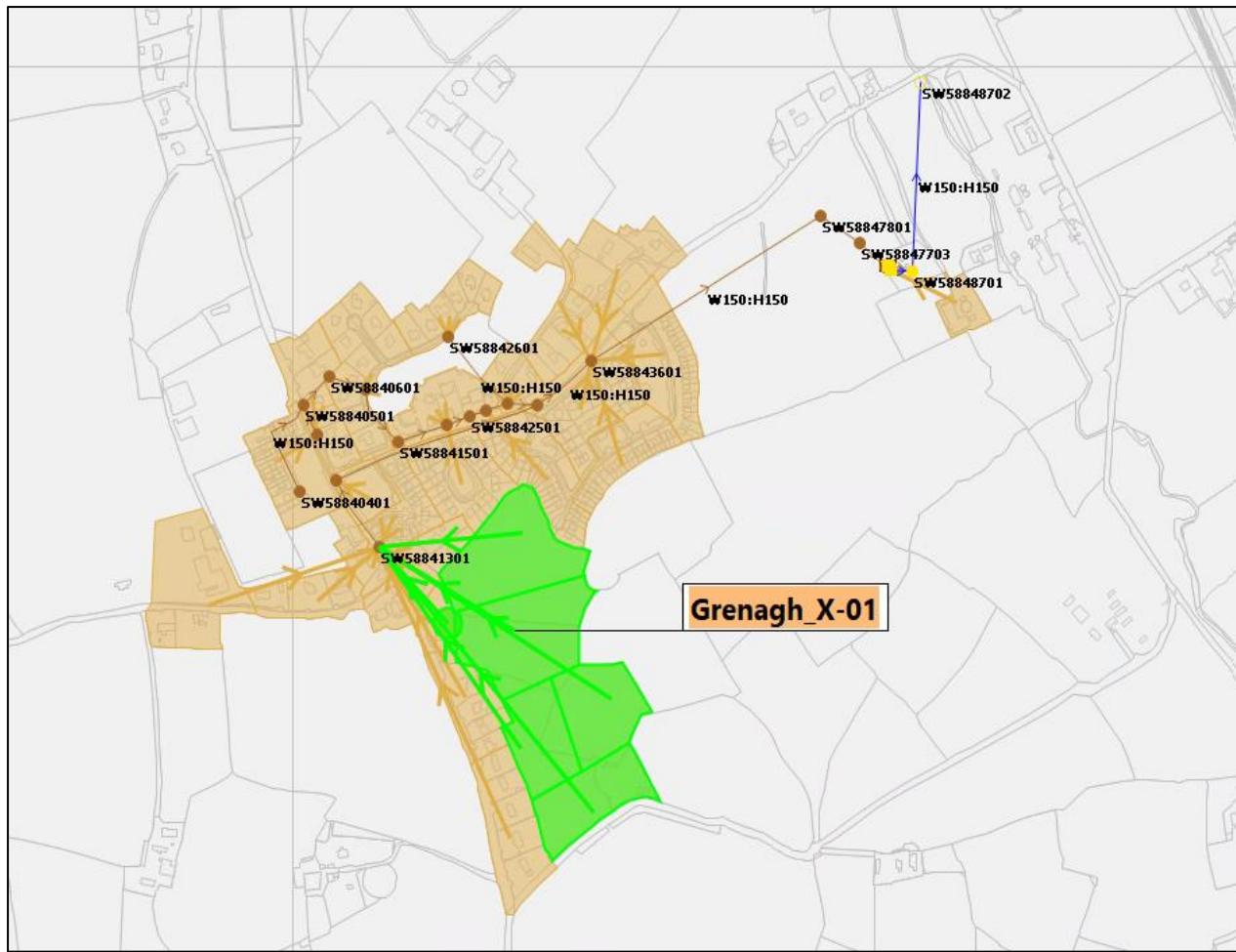


Figure 38: Development Updates for Grenagh.

Table 23: Development Updates for Halfway.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
HF-RD	20	61	101	0.0	0.1	0.2	0.0	0.0	0.0
Totals	20	61 (+41)	101 (+40)	0l/s	0.1l/s (+0.1l/s)	0.2l/s (+0.1l/s)	0l/s	0l/s	0l/s

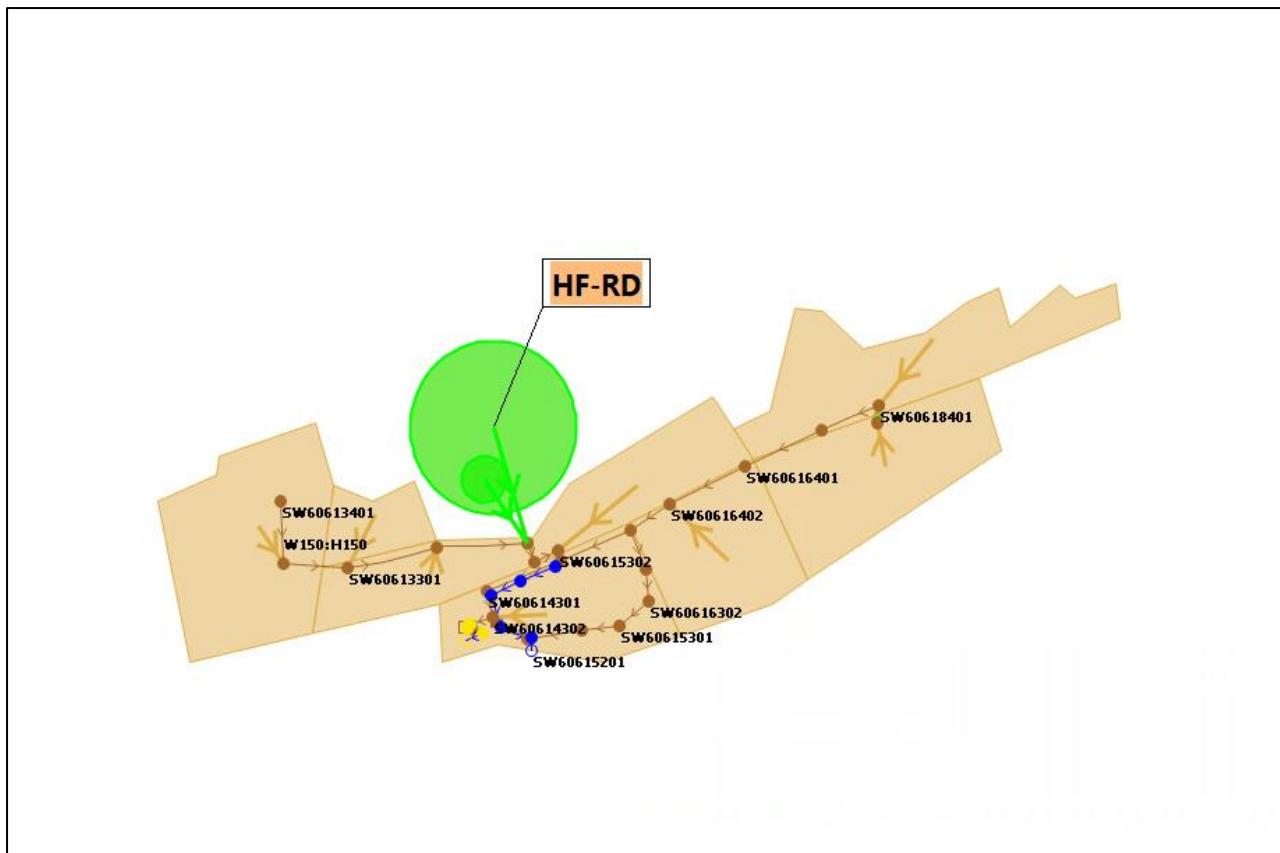


Figure 39: Development Updates for Halfway.

Table 24: Development Updates for Inniscarra Waterworks.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
IC-RD	18	69	109	0.0	0.2	0.2	0.0	0.0	0.0
Totals	18	69 (+51)	109 (+40)	0l/s	0.2l/s (+0.2l/s)	0.2l/s	0l/s	0l/s	0l/s

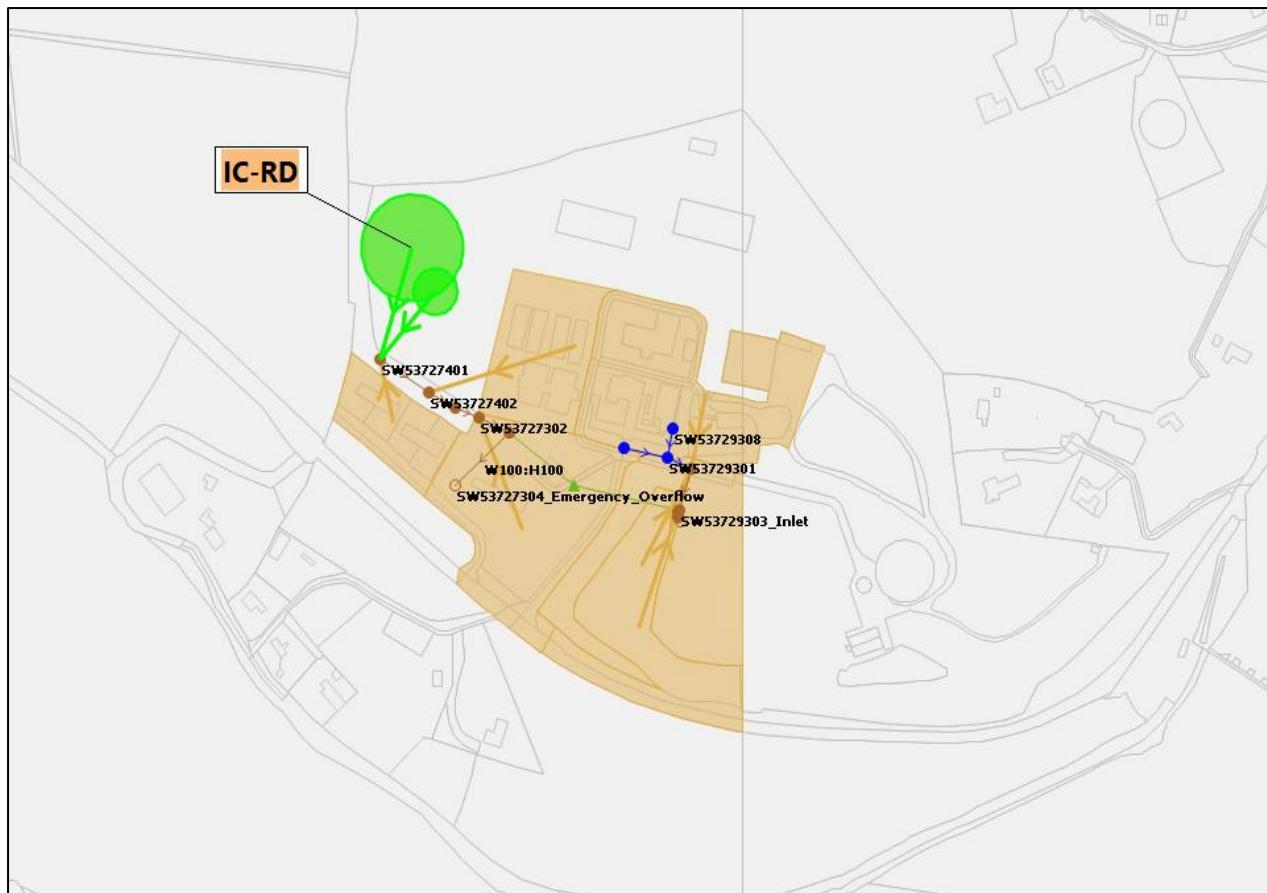


Figure 40: Development Updates for Inniscarra Waterworks

Table 25: Development Updates for Killeens.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
KS-USC-01	31	59	59	0.1	0.1	0.1	0.0	0.0	0.0
Killeens Dummy RDZ*	162	210	314	0.4	0.5	0.7	0.1	0.1	0.1
Totals	193	269 (+76)	373 (+104)	0.5l/s	0.6l/s (+0.1l/s)	0.8l/s (+0.2l/s)	0.1l/s	0.1l/s	0.1l/s

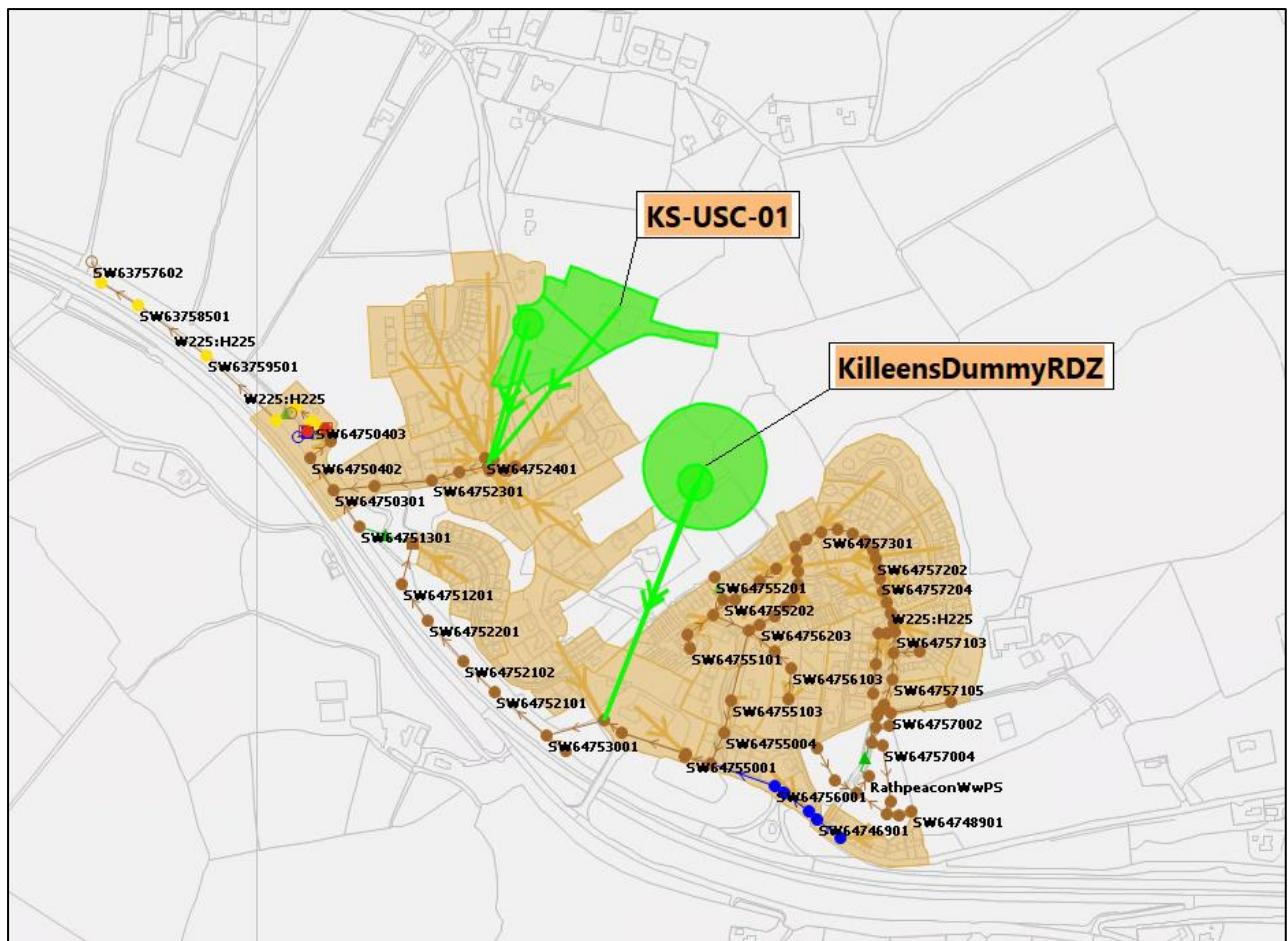


Figure 41: Development Updates for Killeens.

Table 26: Development Updates for Killumney/Ovens.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
KO-R-03	367	610	610	0.8	1.3	1.3	0.1	0.2	0.2
KO-R-02	189	189	189	0.4	0.4	0.4	0.1	0.1	0.1
KO-R-01	402	402	402	0.9	0.9	0.9	0.1	0.1	0.1

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
Totals	958	1201 (+243)	1201	2.1l/s	2.6l/s (+0.5l/s)	2.6l/s	0.3l/s	0.4l/s (+0.1l/s)	0.4l/s
2055 Development Details									
KO-X-01	N/A	81	441	N/A	0.2	1.0	N/A	0.0	0.2
KO-R-04	N/A	203	203	N/A	0.4	0.4	N/A	0.1	0.1
Totals	N/A	284	644 (+360)	N/A	0.6l/s	1.4l/s (+0.8l/s)	N/A	0.1l/s	0.3l/s (+0.2l/s)

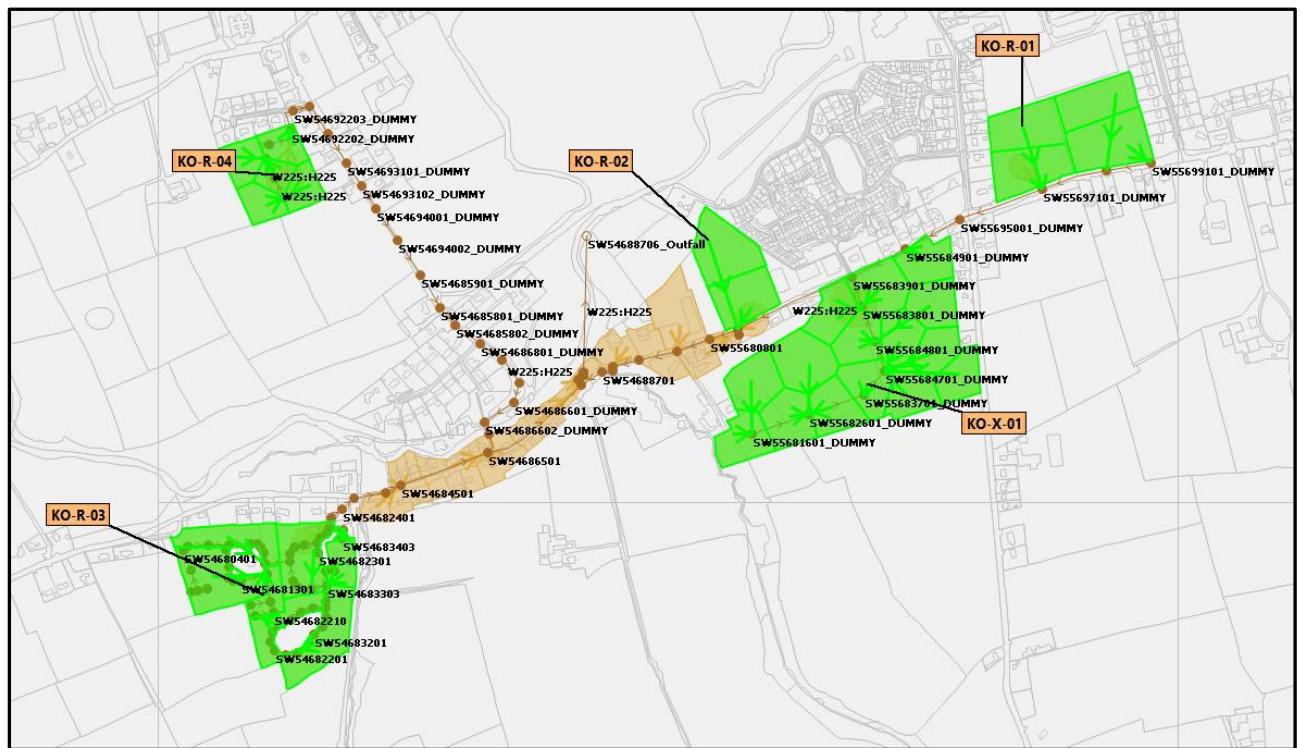


Figure 42: Development Updates for Killumney/Ovens.

Table 27: Development Updates for Knockraha.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
KR-RD	36	113	184	0.1	0.2	0.4	0.0	0.0	0.1
Totals	36	113 (+77)	184 (+71)	0.1l/s	0.2l/s (+0.1l/s)	0.4l/s (+0.2l/s)	0l/s	0l/s	0.1l/s (+0.1l/s)

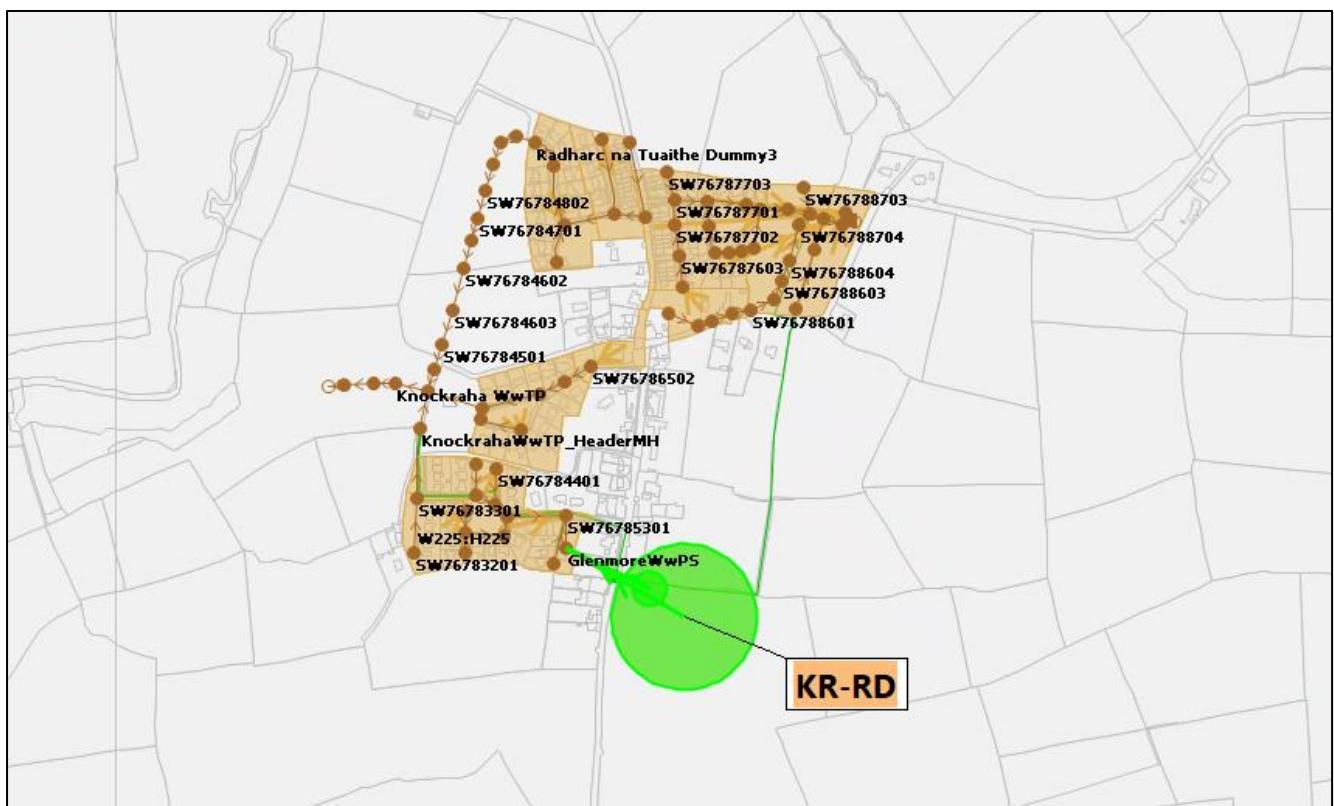


Figure 43: Development Updates for Knockraha.

Table 28: Development Updates for Leamlara.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
LL-RD	38	141	221	0.1	0.3	0.5	0.0	0.0	0.1
Totals	38	141 (+103)	221 (+80)	0.1l/s	0.3l/s (+0.2l/s)	0.5l/s (+0.2l/s)	0l/s	0l/s	0.1l/s (+0.1l/s)

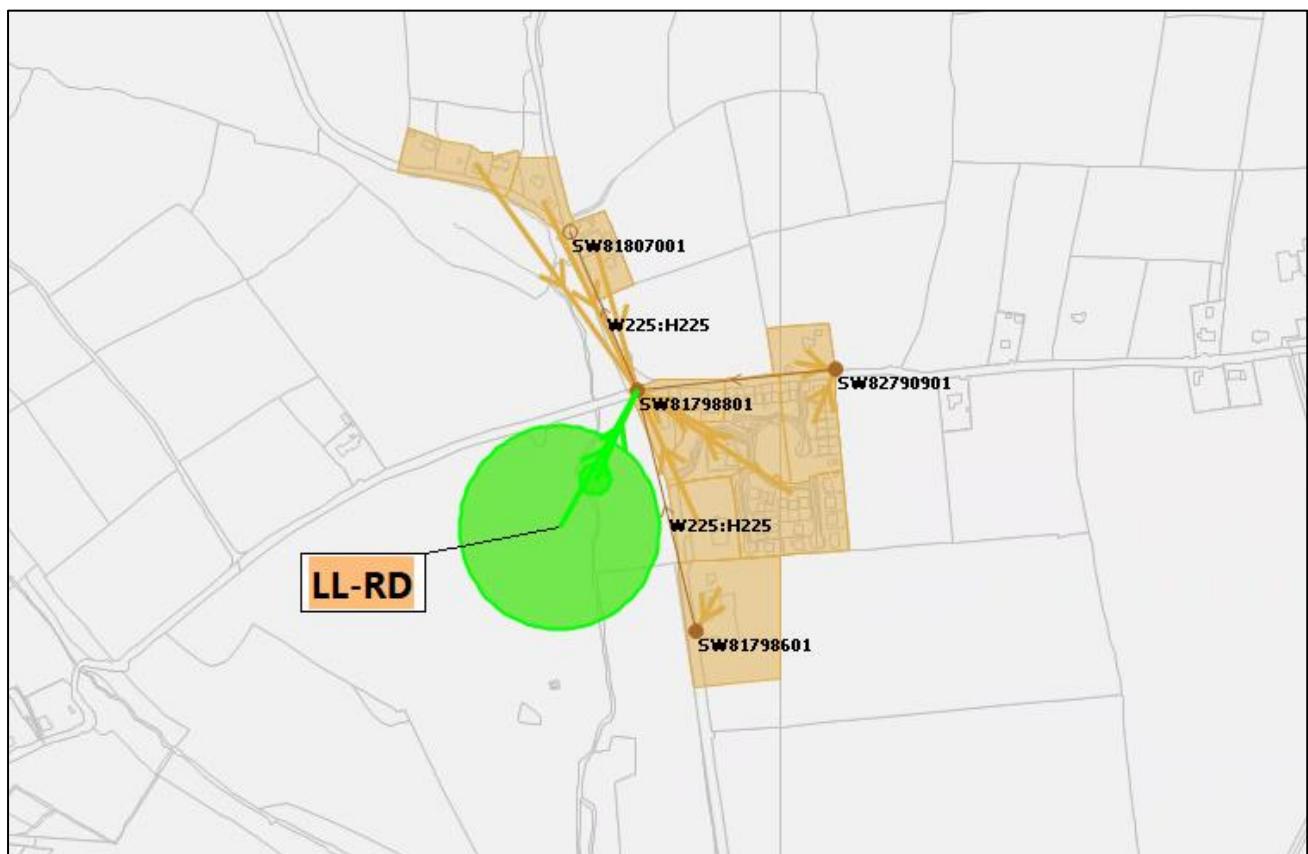


Figure 44: Development Updates for Leamlara.

Table 29: Development Updates for Matehy.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
MA-RD	27	100	157	0.1	0.2	0.3	0.0	0.0	0.1
Totals	27	100 (+73)	157 (+57)	0.1l/s	0.2l/s (+0.1l/s)	0.3l/s (+0.1l/s)	0l/s	0l/s	0.1l/s (+0.1l/s)

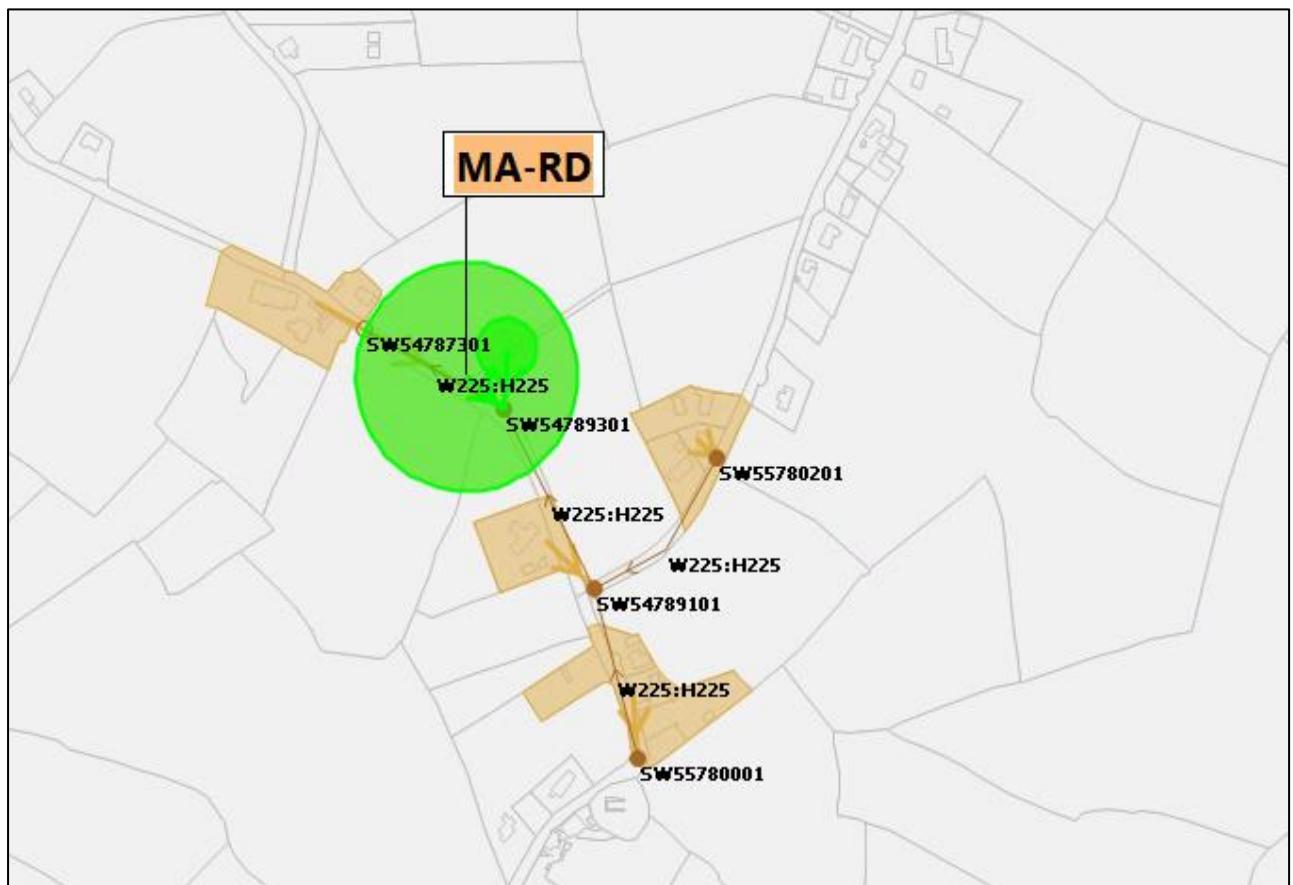


Figure 45: Development Updates for Matehy.

Table 30: Development Updates for Minane Bridge.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
T-01	27	27	27	0.1	0.1	0.1	0.0	0.0	0.0
ME-RD	10	74	124	0.0	0.2	0.3	0.0	0.0	0.0
Totals	37	101 (+44)	151 (+50)	0.1l/s	0.3l/s (+0.2l/s)	0.4l/s (+0.1l/s)	0l/s	0l/s	0l/s

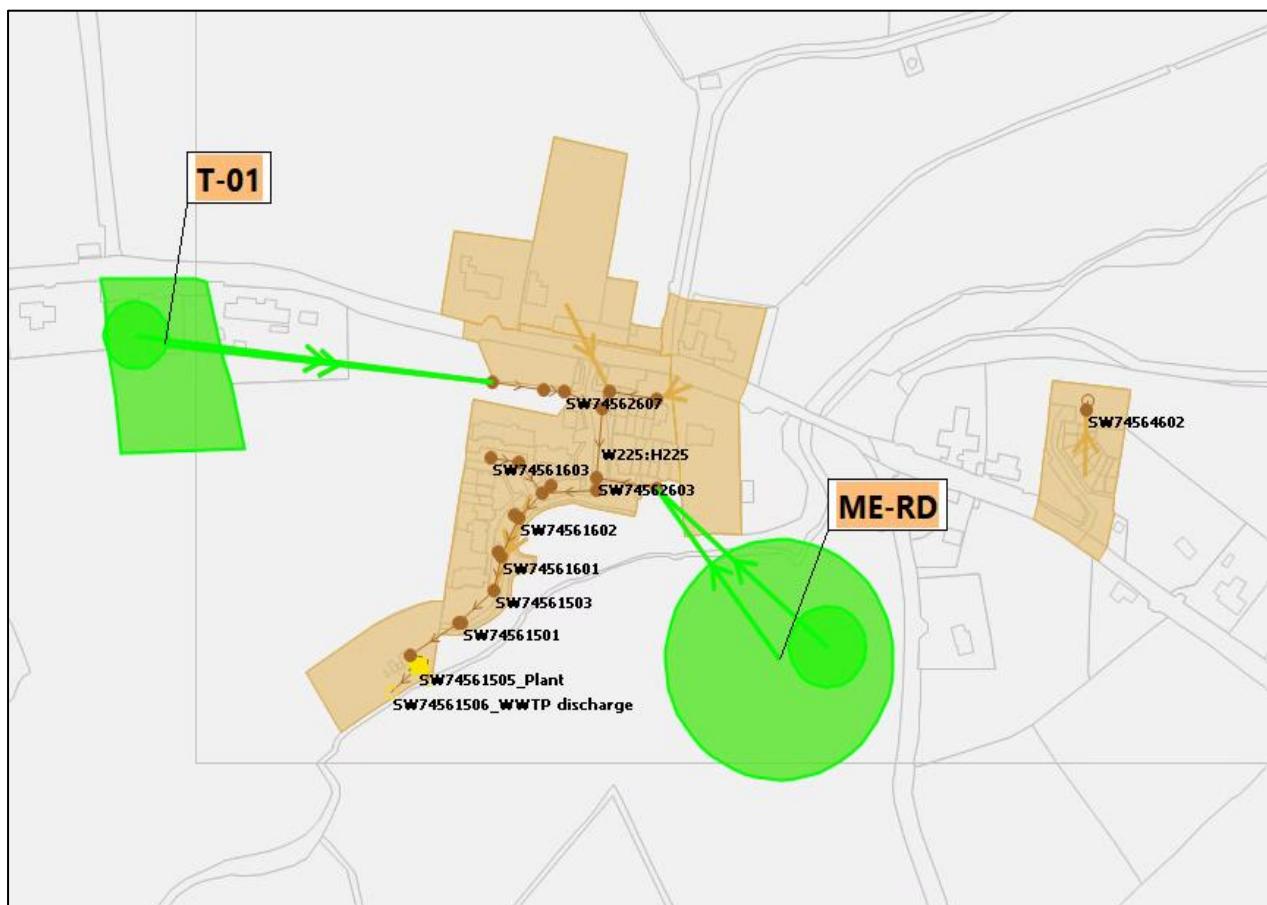


Figure 46: Development Updates for Minane Bridge.

Table 31: Development Updates for Myrtle Village.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
MV-RD	77	283	443	0.2	0.6	1.0	0.0	0.1	0.2
Totals	77	283 (+106)	443 (+160)	0.2l/s	0.6l/s (+0.4l/s)	1l/s (+0.4l/s)	0l/s	0.1l/s (+0.1l/s)	0.2l/s (+0.1l/s)

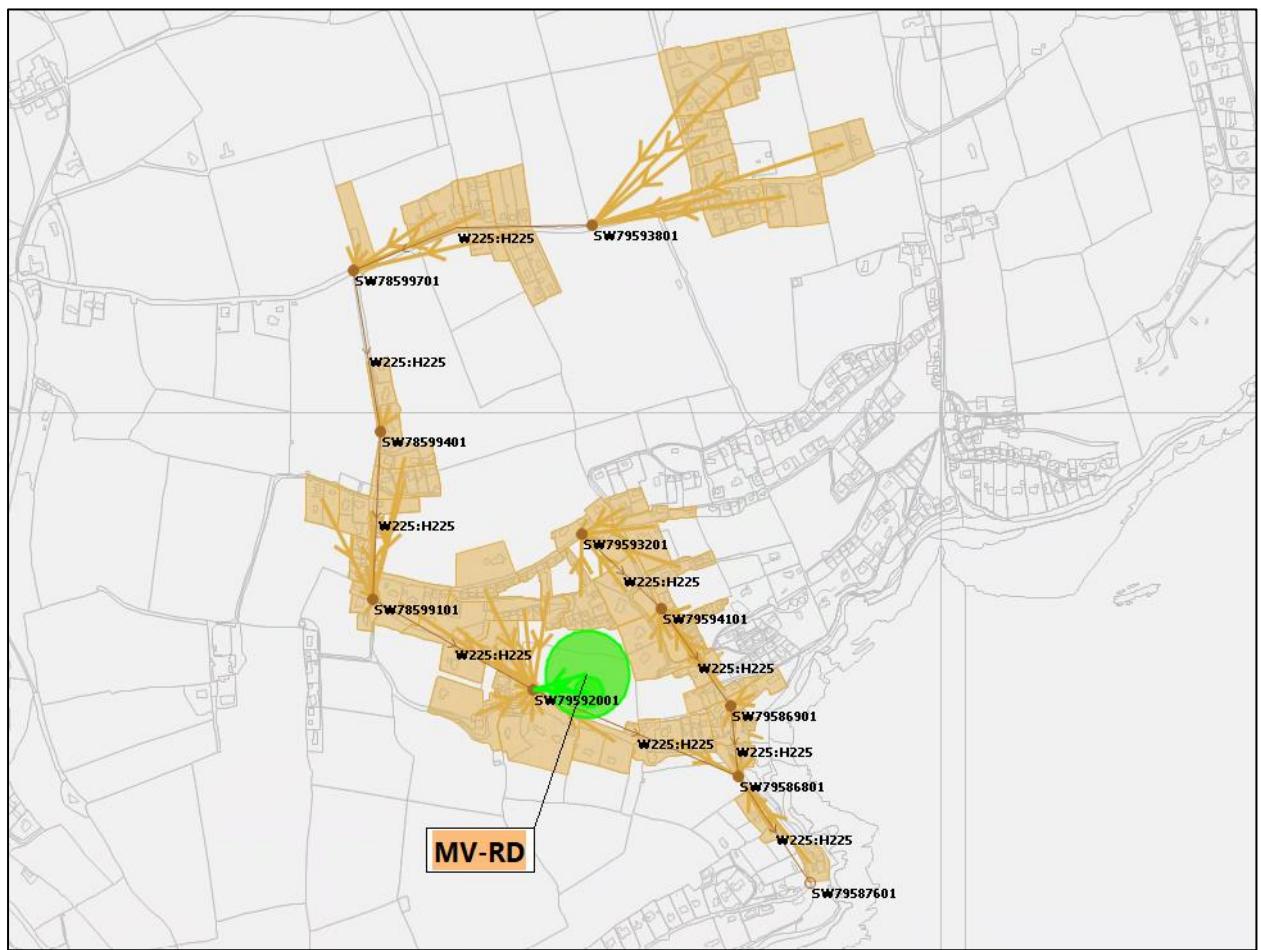


Figure 47: Development Updates for Minane Bridge.

Table 32: Development Updates for Saleen Village.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
SN-RD	67	172	267	0.1	0.4	0.6	0.0	0.1	0.1
Totals	67	172 (+105)	267 (+95)	0.1l/s	0.4l/s (+0.3l/s)	0.6l/s (+0.2l/s)	0l/s	0.1l/s (+0.1l/s)	0.1l/s

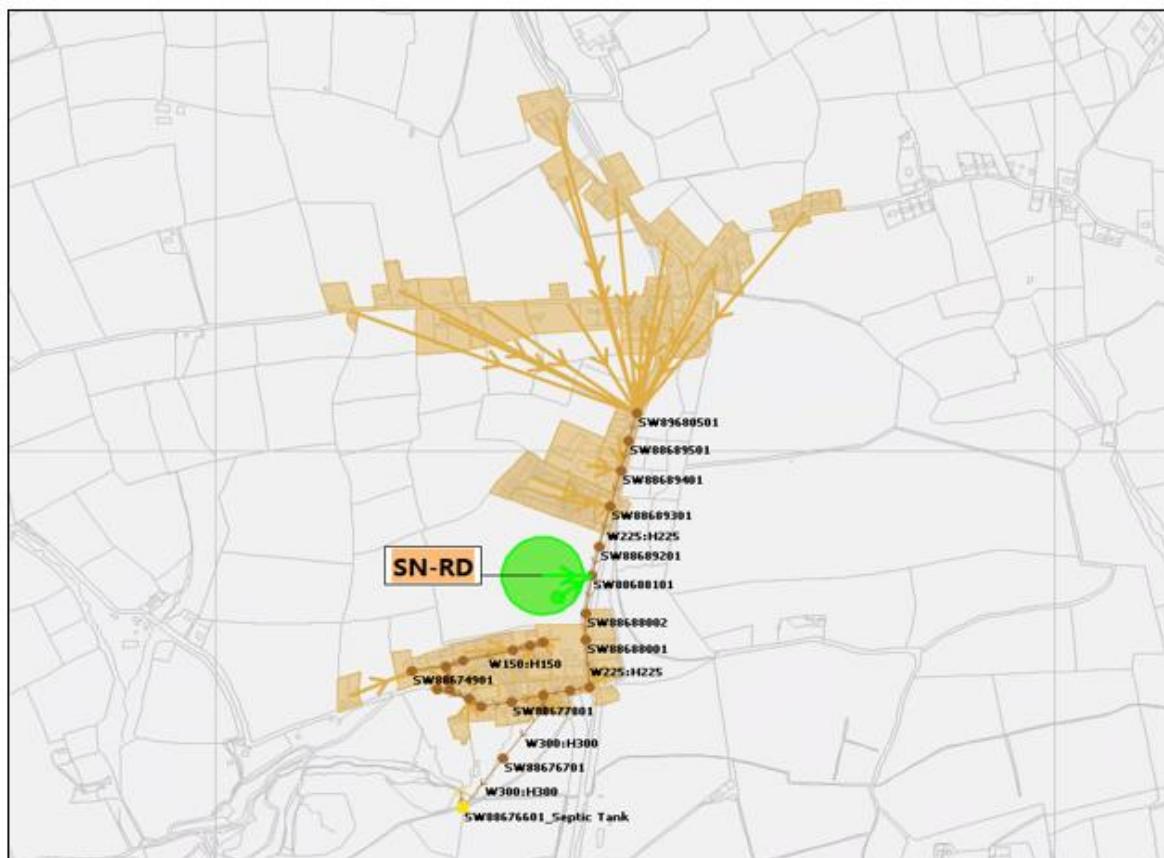


Figure 48: Development Updates for Saleen Village.

Table 33: Development Updates for Watergrasshill.

Zoning ID	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
WT-R-01	46	54	70	0.1	0.1	0.2	0.0	0.0	0.0
WT-R-02	265	295	403	0.6	0.6	0.9	0.1	0.1	0.1
WT-R-03	17	186	265	0.0	0.4	0.6	0.0	0.1	0.1
Totals	328	535 (+207)	738 (+203)	0.7l/s	1.1l/s (+0.4l/s)	1.7l/s (+0.6l/s)	0.1l/s	0.2l/s (+0.1l/s)	0.2l/s
2055 Development Details									
WT-X-01	N/A	211	211	N/A	0.1	0.1	N/A	0.1	0.1
Totals	N/A	211	211	N/A	0.1	0.1	N/A	0.1	0.1

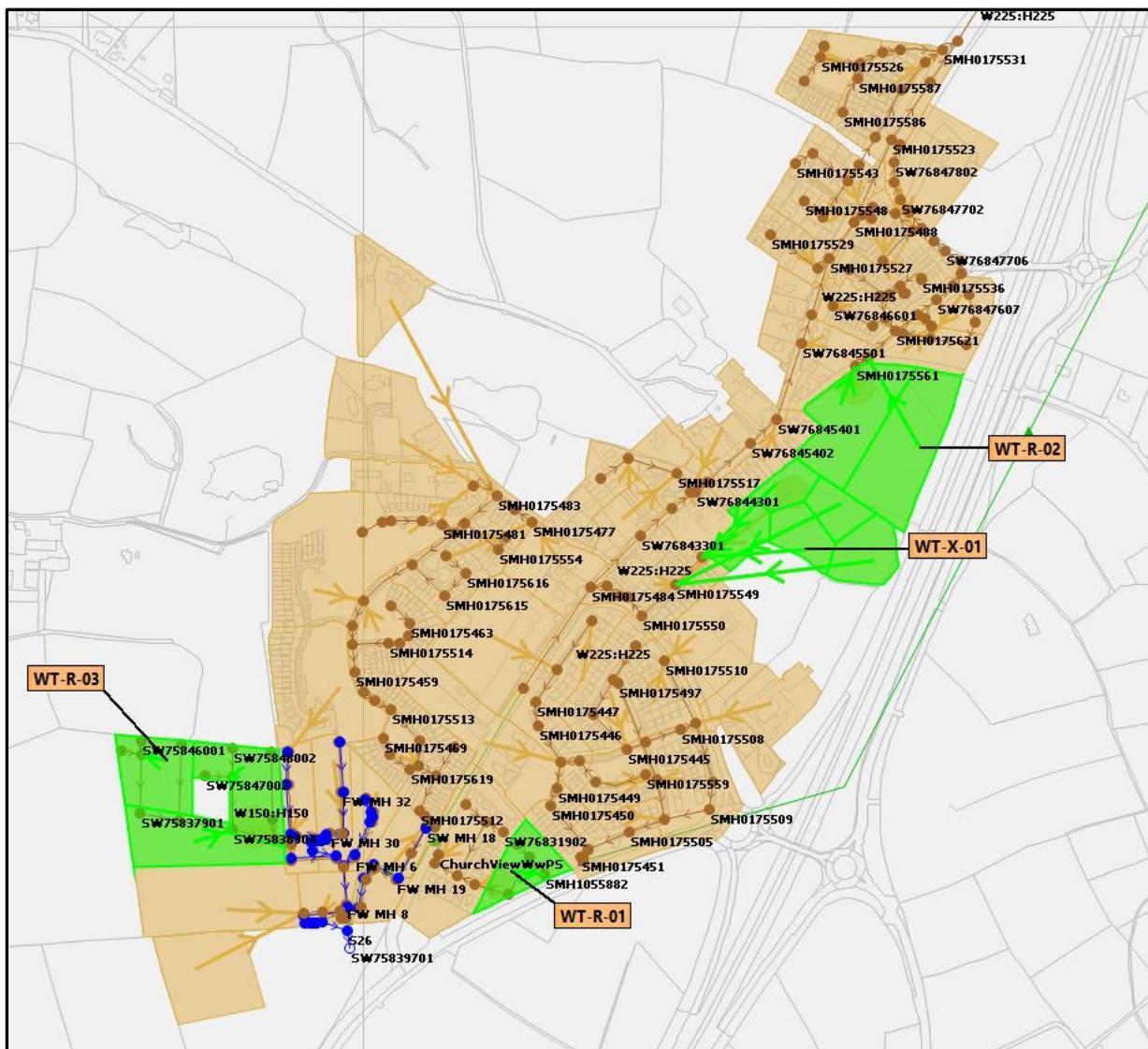


Figure 49: Development Updates for Watergrasshill.

Table 34: Development Updates for Whitegate/Aghada.

	Total Population			Total Zone Flows (L/S)			Commercial Flows (L/S)		
Zoning ID	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon	2030 Horizon	2055 Horizon	2080 Horizon
2030 Development Details									
WG-R-02	45	178	178	0.1	0.4	0.4	0.0	0.1	0.1

WG-R-01	68	265	265	0.1	0.6	0.6	0.0	0.1	0.1
Totals	113	443 (+330)	443	0.2l/s	1l/s (+0.8l/s)	1l/s	0l/s	0.2l/s (+0.2l/s)	0.2l/s
2055 Development Details									
WG-R-03	N/A	118	118	N/A	0.3	0.3	N/A	0.0	0.0
Totals	N/A	118	118	N/A	0.3l/s	0.3l/s	N/A	0l/s	0l/s
2080 Development Details									
WG-RD	N/A	N/A	363	N/A	N/A	0.8	N/A	N/A	0.1
Totals	N/A	N/A	363	N/A	N/A	0.8l/s	N/A	N/A	0.1l/s

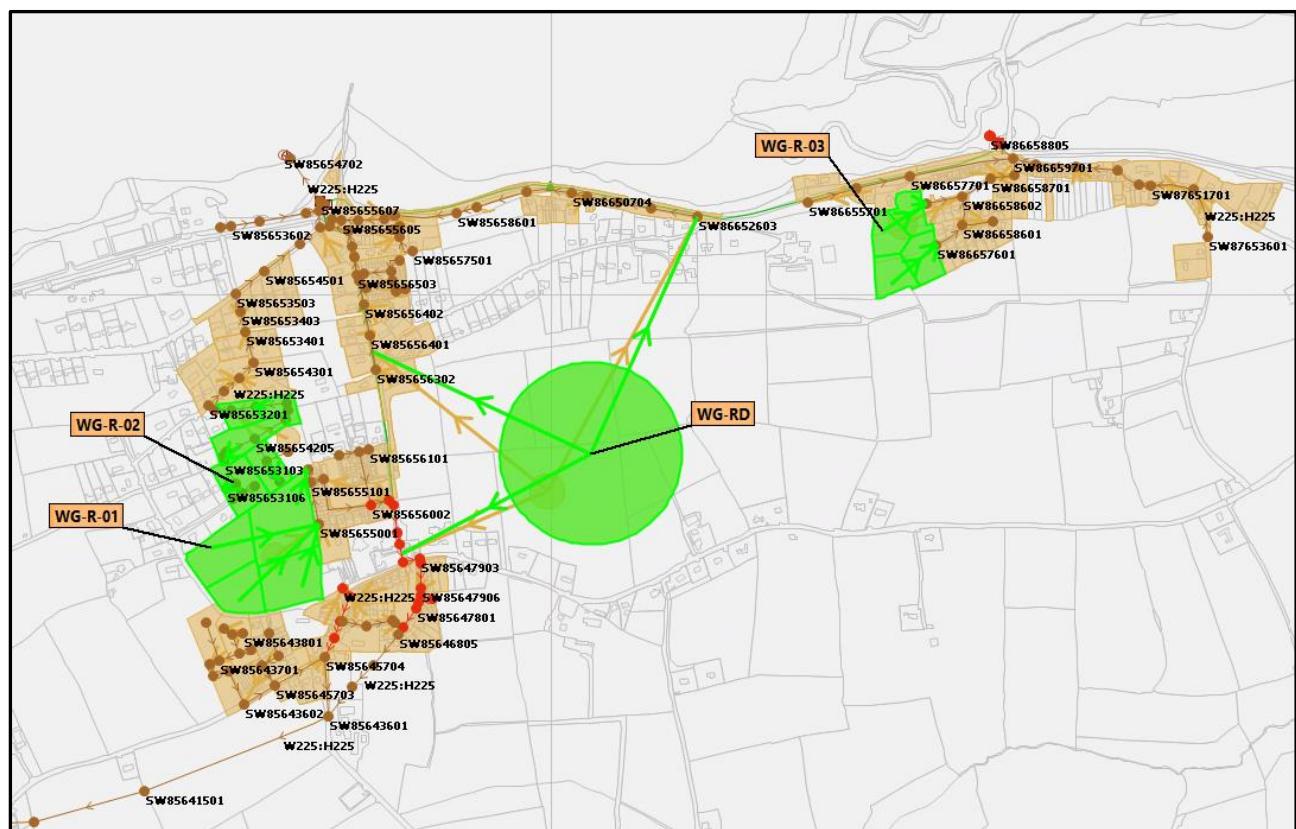


Figure 50: Development Updates for Whitegate/Aghada.

Appendix B – Storm Water Overflows Summary

1. Cork City SWO Details

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Allendale Ave OS 33 (Dual MH)	SW63696902	Short Term Development Model (2030)	-	-	Y	0.05	0.14	0.14	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.05	0.14	0.14	
		Full Development Model (2080)	-	-	Y	0.05	0.14	0.14	
		Solution Model (2080)	DECOMMISSIONED						
Allendale Drive (SW63706001) (Dual MH)	SW63706001	Short Term Development Model (2030)	-	-	Y	0.18	0.54	0.54	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.18	0.54	0.54	
		Full Development Model (2080)	-	-	Y	0.18	0.54	0.54	
		Solution Model (2080)	DECOMMISSIONED						
Allendale Drive OS 45 (Dual MH)	SW63706007	Short Term Development Model (2030)	-	-	Y	0.23	0.69	0.69	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.23	0.69	0.69	
		Full Development Model (2080)	-	-	Y	0.23	0.69	0.69	
		Solution Model (2080)	DECOMMISSIONED						

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Allendale Drive OS 47 (Dual MH)	SW63706008	Short Term Development Model (2030)	-	-	Y	0.35	1.04	1.04	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.35	1.04	1.04	
		Full Development Model (2080)	-	-	Y	0.35	1.04	1.04	
		Solution Model (2080)	DECOMMISSIONED						
Allendale Drive OS 49 (Dual MH)	SW63706004	Short Term Development Model (2030)	-	-	Y	0.10	0.31	0.31	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.10	0.31	0.31	
		Full Development Model (2080)	-	-	Y	0.10	0.31	0.31	
		Solution Model (2080)	DECOMMISSIONED						
Anglesea Road SWO	SW68710404	Short Term Development Model (2030)	3	2,171	Y	43.00	91.15	166.52	River Lee Estuary Upper
	SW68710404	Long Term Development Model (2055)	3	3,109	Y	43.04	91.25	166.63	
	SW68710480	Full Development Model (2080)	3	3,108	Y	43.42	92.23	167.61	
	SW68710480	Solution Model (2080)	-	-	Y	43.42	92.23	167.61	
Assumption Road SWO	SW67735102_WE IR2	Short Term Development Model (2030)	6	924	Y	12.24	14.73	17.46	River Bride

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	7	1,274	Y	12.34	14.95	17.67	
		Full Development Model (2080)	8	1,265	Y	13.25	17.28	20.01	
		Solution Model (2080)	1	124	Y	13.25	17.28	20.01	
Atlantic Pond WwPS	SW70717897	Short Term Development Model (2030)	313	9,462,550	N	1,111.96	2,663.94	3,307.75	River Lee Estuary Lower
		Long Term Development Model (2055)	352	14,568,384	N	1,235.45	2,977.42	3,621.23	
	SW70717897_slope1	Full Development Model (2080)	359	16,810,808	N	1,284.91	3,104.29	3,748.10	
		Solution Model (2080)	11	400,584	Y	1,245.14	3,004.48	3,648.30	
Ballyvolane WwPS	Ballyvolane PWSA Storage tank	Short Term Development Model (2030)	-	-	Y	11.41	29.06	31.50	Unknown
		Long Term Development Model (2055)	9	4,795	Y	31.68	80.81	83.24	
		Full Development Model (2080)	8	4,582	Y	31.68	80.81	83.24	
		Solution Model (2080)	-	-	Y	91.09	234.50	236.93	
Barrack Street SWO	SW67712401_WEIR2	Short Term Development Model (2030)	5	448	Y	2.18	4.55	8.37	River Lee Estuary Upper
		Long Term Development Model (2055)	4	506	Y	2.18	4.55	8.37	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	4	424	Y	2.18	4.55	8.37	
		Solution Model (2080)	-	-	Y	2.18	4.55	8.37	
Beales Hill SWO	SW69722312_SC REEN1	Short Term Development Model (2030)	-	-	Y	0.43	2.27	2.27	River Lee Estuary Lower
		Long Term Development Model (2055)	-	-	Y	0.43	2.27	2.27	
		Full Development Model (2080)	-	-	Y	0.43	2.27	2.27	
		Solution Model (2080)	-	-	Y	0.43	2.27	2.27	
		Short Term Development Model (2030)	1	5,139	Y	154.32	373.14	448.04	
Belgard Downs SWO	SW70694505_Overflow	Long Term Development Model (2055)	2	8,904	Y	178.29	434.25	509.15	Lough Mahon
		Full Development Model (2080)	1	2,318	Y	186.28	454.63	529.53	
		Solution Model (2080)	3	8,825	Y	186.28	454.63	529.53	
		Short Term Development Model (2030)	-	-	Y	0.10	0.31	0.84	
Bellevue WwPS	SW69728301	Long Term Development Model (2055)	-	-	Y	0.10	0.31	0.84	River Lee Estuary Lower
		Full Development Model (2080)	-	-	Y	0.10	0.31	0.84	
		Solution Model (2080)	-	-	Y	0.10	0.31	0.84	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Bessborough WwPS	SW71705107_WW	Short Term Development Model (2030)	1	91	Y	12.68	36.86	56.14	Lough Mahon
		Long Term Development Model (2055)	2	251	Y	13.03	37.71	57.00	
		Full Development Model (2080)	2	243	Y	16.56	46.76	66.04	
		Solution Model (2080)	0	70	Y	16.56	46.76	66.04	
Bishop Street SWO	SW66719408_WEIR2	Short Term Development Model (2030)	218	77,755	N	10.46	21.90	41.72	River Lee Estuary Upper
		Long Term Development Model (2055)	283	122,886	N	10.46	21.90	41.72	
		Full Development Model (2080)	305	142,496	N	10.46	52.46	41.72	
		Solution Model (2080)	2	380	Y	10.46	52.46	41.72	
Boreenmanna Road (Ashton) SWO	SW68717003_WEIR	Short Term Development Model (2030)	23	25,213	N	9.49	25.82	52.26	River Lee Estuary Lower
		Long Term Development Model (2055)	25	29,015	N	9.49	25.82	52.26	
		Full Development Model (2080)	27	28,064	N	9.49	25.82	52.26	
		Solution Model (2080)	5	3,063	Y	9.49	25.82	52.26	
Bridge Street SWO	SW67726110_SCREEN1	Short Term Development Model (2030)	9	2,613	Y	5.26	7.81	12.64	River Lee Estuary Upper

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody	
		Long Term Development Model (2055)	11	3,266	Y	5.26	7.81	12.64		
		Full Development Model (2080)	12	2,955	Y	5.26	7.81	12.64		
		Solution Model (2080)	1	182	Y	5.26	7.81	12.64		
Camden Place SWO	SW67725101	Short Term Development Model (2030)	SOLUTION ONLY							
		Long Term Development Model (2055)	SOLUTION ONLY							
		Full Development Model (2080)	SOLUTION ONLY							
		Solution Model (2080)	4	14,537	Y	497.06	1,164.70	1,384.13	River Lee Estuary Upper	
Camden Quay SWO	SW67724106	Short Term Development Model (2030)	-	-	Y	89.19	179.55	268.85	River Lee Estuary Lower	
		Long Term Development Model (2055)	-	-	Y	89.40	180.09	269.39		
		Full Development Model (2080)	-	-	Y	91.72	185.99	275.29		
		Solution Model (2080)	-	-	Y	91.72	185.99	275.29		
Carrigrennan WwTP Storm Tank	WwTW_DN	Short Term Development Model (2030)	50	484,895	Y	1,684.27	4,087.47	4,859.21	Lough Mahon	
		Long Term Development Model (2055)	75	774,746	Y	1,872.64	4,566.29	5,338.04		

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	97	933,124	Y	1,947.42	4,757.43	5,529.17	
		Solution Model (2080)	-	-	Y	1,975.53	4,833.22	5,604.96	
Castle Avenue WwPS	SW72712903_WW	Short Term Development Model (2030)	-	-	Y	0.45	0.83	1.85	River Lee Estuary Lower
		Long Term Development Model (2055)	-	-	Y	0.45	0.83	1.85	
		Full Development Model (2080)	-	-	Y	0.45	0.83	1.85	
		Solution Model (2080)	-	-	Y	0.45	0.83	1.85	
		Short Term Development Model (2030)	7	1,415	Y	2.33	5.02	8.54	
Cathedral Walk SWO	SW67723604_WEIR2	Long Term Development Model (2055)	8	1,807	Y	2.33	5.02	8.54	River Bride
		Full Development Model (2080)	8	1,500	Y	2.33	5.02	8.54	
		Solution Model (2080)	-	-	Y	2.33	5.02	8.54	
		Short Term Development Model (2030)	-	-	Y	-	-	-	
City Printers WwPS	SW64719206_WW	Long Term Development Model (2055)	-	-	Y	0.01	0.04	0.04	Curragheen River
		Full Development Model (2080)	-	-	Y	0.24	0.61	0.61	
		Solution Model (2080)	-	-	Y	0.24	0.61	0.61	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Clover Lawn SWO	SW71702522_DUM	Short Term Development Model (2030)	-	-	Y	7.28	21.75	40.75	Curragheen River
		Long Term Development Model (2055)	-	-	Y	7.28	21.75	40.75	
		Full Development Model (2080)	-	-	Y	7.28	21.75	40.75	
		Solution Model (2080)	10	11,418	N	7.28	21.75	40.75	
Coal Quay WwPS	SW67722022	Short Term Development Model (2030)	252	347,711	N	34.07	82.50	89.07	River Lee Estuary Upper
		Long Term Development Model (2055)	250	338,843	N	34.07	82.50	89.07	
		Full Development Model (2080)	265	389,660	N	34.07	82.50	89.07	
		Solution Model (2080)	10	3,659	Y	34.07	82.50	89.07	
Convent Avenue SWO	SW71717609_WEIR	Short Term Development Model (2030)	7	1,224	N	0.94	2.82	4.01	River Lee Estuary Lower
		Long Term Development Model (2055)	7	1,520	N	0.94	2.82	4.01	
		Full Development Model (2080)	7	1,268	N	0.94	2.82	4.01	
		Solution Model (2080)	-	-	Y	0.94	2.82	4.01	
Convent Road SWO	SW71716603_WEIR	Short Term Development Model (2030)	3	488	Y	1.71	5.14	7.09	River Lee Estuary Lower

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	3	739	Y	1.71	5.14	7.09	
		Full Development Model (2080)	3	537	Y	1.71	5.14	7.09	
		Solution Model (2080)	-	-	Y	1.71	5.14	7.09	
Cork Ring/Bandon Road WwPS	SW63699101_WW	Short Term Development Model (2030)	-	-	Y	0.13	0.39	0.39	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.13	0.39	0.39	
		Full Development Model (2080)	-	-	Y	0.13	0.39	0.39	
		Solution Model (2080)	-	-	Y	0.13	0.39	0.39	
Courtstown WwPS	SW77714402	Short Term Development Model (2030)	24	7,148	N	1.85	5.08	5.08	Lough Mahon
		Long Term Development Model (2055)	30	10,435	N	2.90	7.63	7.63	
		Full Development Model (2080)	33	10,964	N	3.28	8.59	8.59	
		Solution Model (2080)	1	760	Y	3.28	8.59	8.59	
Crosses Green WwPS	SW67711514_WW	Short Term Development Model (2030)	-	-	Y	3.14	9.41	12.33	River Lee Estuary Upper
		Long Term Development Model (2055)	-	-	Y	3.14	9.41	12.33	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	-	-	Y	3.14	9.41	12.33	
		Solution Model (2080)	-	-	Y	3.14	9.41	12.33	
Crosses Green WwPS (No.2)	SW67711504	Short Term Development Model (2030)	-	-	Y	3.14	9.41	12.33	River Lee Estuary Upper
		Long Term Development Model (2055)	-	-	Y	3.14	9.41	12.33	
		Full Development Model (2080)	-	-	Y	3.14	9.41	12.33	
		Solution Model (2080)	-	-	Y	3.14	9.41	12.33	
		Short Term Development Model (2030)	-	-	Y	0.68	2.04	2.04	
Curraheen (Dog Track) WwPS	SW62693301_WW	Long Term Development Model (2055)	-	-	Y	0.68	2.04	2.04	Curragheen River
		Full Development Model (2080)	-	-	Y	0.68	2.04	2.04	
		Solution Model (2080)	-	-	Y	0.68	2.04	2.04	
		Short Term Development Model (2030)	-	-	Y	3.88	11.64	12.71	
Curraheen WwPS	SW62699502_WW1	Long Term Development Model (2055)	-	-	Y	3.88	11.64	12.71	Curragheen River
		Full Development Model (2080)	-	-	Y	3.88	11.64	12.71	
	SW62699502_WW2	Solution Model (2080)	-	-	Y	3.88	11.64	12.71	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Deanrock, Summerstown Lane SWO	SW65697728_WE IR2	Short Term Development Model (2030)	-	-	Y	2.93	8.78	28.52	Curragheen River
		Long Term Development Model (2055)	-	-	Y	3.09	9.19	28.93	
		Full Development Model (2080)	-	-	Y	4.23	12.60	32.34	
		Solution Model (2080)	DECOMMISSIONED						
Deerpark No.1	SW67701607	Short Term Development Model (2030)	-	-	Y	0.10	0.22	0.22	Groundwater
		Long Term Development Model (2055)	-	-	Y	0.10	0.22	0.22	
		Full Development Model (2080)	-	-	Y	0.10	0.22	0.22	
		Solution Model (2080)	DECOMMISSIONED						
Deerpark No.2	SW67701908	Short Term Development Model (2030)	-	-	Y	2.85	3.56	3.76	Groundwater
		Long Term Development Model (2055)	-	-	Y	2.85	3.56	3.76	
		Full Development Model (2080)	-	-	Y	2.85	3.56	3.76	
		Solution Model (2080)	DECOMMISSIONED						
Dennehy's Cross SWO	SW65702801_WE IR1	Short Term Development Model (2030)	-	-	Y	5.45	13.23	26.97	Curragheen River

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
	SW65702801_WE IR2	Long Term Development Model (2055)	-	-	Y	5.48	13.29	27.03	Glasheen River
		Full Development Model (2080)	-	-	Y	5.68	13.89	27.63	
		Solution Model (2080)	DECOMMISSIONED						
Donscourt No.2 SWO	SW64697403	Short Term Development Model (2030)	-	-	Y	0.72	1.81	2.23	Glasheen River
		Long Term Development Model (2055)	1	57	Y	0.72	1.81	2.23	
		Full Development Model (2080)	1	50	Y	0.72	1.81	2.23	
		Solution Model (2080)	DECOMMISSIONED						
Donscourt WwPS	SW64697405_W W	Short Term Development Model (2030)	-	-	Y	0.72	1.81	2.23	Glasheen River
		Long Term Development Model (2055)	-	-	Y	0.72	1.81	2.23	
		Full Development Model (2080)	-	-	Y	0.72	1.81	2.23	
		Solution Model (2080)	-	-	Y	0.72	1.81	2.23	
Douglas Hall Lawn SWO	SW69708006	Short Term Development Model (2030)	67	74,156	N	2.55	7.47	20.87	Lough Mahon
	SW69708006	Long Term Development Model (2055)	66	79,109	N	2.55	7.47	20.87	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
	SW69708006_Dummmy1	Full Development Model (2080)	70	82,619	N	2.55	7.47	20.87	
		Solution Model (2080)	6	660	Y	2.55	7.47	20.87	
Eastgate WwPS	SW75722701	Short Term Development Model (2030)	-	-	Y	120.03	295.63	296.69	Groundwater
		Long Term Development Model (2055)	-	-	Y	137.23	339.35	340.40	
		Full Development Model (2080)	-	-	Y	138.09	341.55	342.60	
		Solution Model (2080)	-	-	Y	146.56	363.45	364.51	
Eikpa Lodge Sunday's Well SWO	SW65717705_WEIR2	Short Term Development Model (2030)	68	23,749	N	5.06	9.56	13.46	River Lee Estuary Upper
		Long Term Development Model (2055)	64	25,788	N	5.06	9.56	13.46	
		Full Development Model (2080)	67	26,989	N	5.06	9.56	13.46	
		Solution Model (2080)	4	858	Y	5.06	9.56	13.46	
Ferney Road SWO	SW72716702	Short Term Development Model (2030)	3	691	Y	2.41	7.24	9.07	Lough Mahon
		Long Term Development Model (2055)	4	1,138	Y	2.41	7.24	9.07	
		Full Development Model (2080)	4	1,130	Y	2.41	7.24	9.07	
		Solution Model (2080)	DECOMMISSIONED						

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Fever Hospital Steps SWO	SW67724611_WE IR1	Short Term Development Model (2030)	8	2,154	Y	4.58	5.71	9.70	River Bride
		Long Term Development Model (2055)	9	2,658	Y	4.58	5.71	9.70	
		Full Development Model (2080)	9	2,373	Y	4.58	5.71	9.70	
		Solution Model (2080)	-	-	Y	4.58	5.71	9.70	
Fitzpatrick's WwPS SWO	SW77733202	Short Term Development Model (2030)	2	442	Y	7.10	17.65	17.65	Lough Mahon (Harper's Island)
		Long Term Development Model (2055)	2	683	Y	9.34	23.37	23.37	
	SW77733202	Full Development Model (2080)	2	549	Y	10.20	25.57	25.57	
		Solution Model (2080)	3	1,701	Y	10.20	25.57	25.57	
Flannery's Pub SWO	SW65707406_SL UICE.1	Short Term Development Model (2030)	11	5,877	N	1.92	4.77	10.22	Glasheen River
	SW65707406_SL UICE	Long Term Development Model (2055)	12	6,573	N	1.92	4.77	10.22	
	SW65707406_WE IR1	Full Development Model (2080)	13	6,544	N	1.92	4.77	10.22	
	SW65707406_WE IR2	Solution Model (2080)	3	821	Y	1.92	4.77	10.22	
Flaxfort Road WwPS	SW75713518_OF	Short Term Development Model (2030)	-	-	Y	244.45	660.86	661.92	Lough Mahon

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	-	-	Y	262.12	709.77	706.83	
		Full Development Model (2080)	-	-	Y	263.17	708.44	709.50	
		Solution Model (2080)	1	286	Y	271.64	730.34	731.40	
Fremont Drive (Dual MH)	SW63707106	Short Term Development Model (2030)	-	-	Y	0.07	0.21	0.21	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.07	0.21	0.21	
		Full Development Model (2080)	-	-	Y	0.07	0.21	0.21	
		Solution Model (2080)	DECOMMISSIONED						
Gaol Walk SWO	SW65719203	Short Term Development Model (2030)	61	30,032	N	5.63	10.90	12.67	River Lee Estuary Upper
	SW65719203	Long Term Development Model (2055)	60	31,081	N	5.63	10.90	12.67	
	SW65719203_WE IR	Full Development Model (2080)	60	31,570	N	5.63	10.90	12.67	
		Solution Model (2080)	1	226	Y	5.63	10.90	12.67	
Gerald Griffin Street SWO	SW67723809_WE IR2	Short Term Development Model (2030)	163	220,736	N	41.34	100.21	140.53	River Bride
		Long Term Development Model (2055)	156	228,338	N	41.37	100.26	140.59	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody	
		Full Development Model (2080)	161	236,121	N	41.65	100.98	141.31		
		Solution Model (2080)	10	3,803	Y	41.65	100.98	141.31		
Gilabbey Rock SWO	SW66716404_WE IR	Short Term Development Model (2030)	-	-	Y	195.20	525.61	687.70	River Lee Estuary Upper	
		Long Term Development Model (2055)	-	-	Y	256.67	681.16	843.26		
		Full Development Model (2080)	-	-	Y	279.25	744.12	906.22		
		Solution Model (2080)	DECOMMISSIONED							
		Short Term Development Model (2030)	-	-	Y	186.94	501.52	663.46		
Gilabbey Rock WwPS	SW66716402_DU M	Long Term Development Model (2055)	-	-	Y	249.11	658.07	820.01	River Lee Estuary Upper	
		Full Development Model (2080)	-	-	Y	278.34	733.44	895.38		
	SW66716404	Solution Model (2080)	1	349	Y	278.34	733.44	895.38		
		Short Term Development Model (2030)	-	-	Y	2.43	5.12	5.12		
Glanmire Business Estate SWO	SW72736903	Long Term Development Model (2055)	-	-	Y	2.43	5.12	5.12	Glashaboy Estuary	
		Full Development Model (2080)	-	-	Y	2.43	5.12	5.12		
		Solution Model (2080)	-	-	Y	2.43	5.12	5.12		

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Glanmire WwPS	SW72747201	Short Term Development Model (2030)	-	-	Y	58.13	142.48	143.54	Glashaboy Estuary
		Long Term Development Model (2055)	-	-	Y	59.09	144.94	145.99	
		Full Development Model (2080)	-	-	Y	59.09	144.94	145.99	
		Solution Model (2080)	-	-	Y	67.56	166.84	167.89	
Glasheen Bridge SWO	SW65703701_WE IR	Short Term Development Model (2030)	97	108,206	N	84.51	216.31	350.73	Glasheen River
		Long Term Development Model (2055)	123	160,379	N	108.86	277.99	412.41	
		Full Development Model (2080)	126	174,614	N	126.05	321.76	456.18	
		Solution Model (2080)	1	422	Y	126.05	321.76	456.18	
Glasheen Road SWO	SW65706402_WE IR	Short Term Development Model (2030)	-	-	Y	1.95	4.87	10.32	Glasheen River
		Long Term Development Model (2055)	-	-	Y	1.95	4.87	10.32	
		Full Development Model (2080)	-	-	Y	1.95	4.87	10.32	
		Solution Model (2080)	DECOMMISSIONED						
Glencurrig WwPS	SW69690305_DUM	Short Term Development Model (2030)	-	-	Y	2.86	7.63	7.63	Moneygurney River

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	-	-	Y	2.86	7.63	7.63	
		Full Development Model (2080)	-	-	Y	2.86	7.63	7.63	
		Solution Model (2080)	1	334	Y	2.86	7.63	7.63	
Glendale SWO	SW65708403	Short Term Development Model (2030)	42	24,491	N	14.94	38.40	68.59	Glasheen River
		Long Term Development Model (2055)	42	27,206	N	14.94	38.40	68.59	
		Full Development Model (2080)	45	27,977	N	14.94	38.40	68.59	
		Solution Model (2080)	4	3,099	Y	14.94	38.40	68.59	
Grand Parade WwPS	SW67713565	Short Term Development Model (2030)	161	1,256,574	N	45.88	117.01	123.90	River Lee Estuary Upper
	SW67713565	Long Term Development Model (2055)	161	1,267,266	N	45.88	117.01	123.90	
	SW67713565	Full Development Model (2080)	165	1,387,324	N	45.88	117.01	123.90	
	SW67713598	Solution Model (2080)	9	2,655	Y	45.88	117.01	123.90	
Grattan Hill SWO	SW68727308_SC REEN1	Short Term Development Model (2030)	-	-	Y	26.61	38.15	42.00	River Lee Estuary Lower
		Long Term Development Model (2055)	-	-	Y	32.39	55.47	83.89	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody	
		Full Development Model (2080)	-	-	Y	32.68	56.21	86.64		
		Solution Model (2080)	-	-	Y	32.68	56.21	86.64		
Great Wm O'Brien Street SWO	SW67733010_WE IR	Short Term Development Model (2030)	3	263	Y	1.17	3.38	6.43	River Bride	
		Long Term Development Model (2055)	3	343	Y	1.20	3.44	4.77		
		Full Development Model (2080)	3	267	Y	1.48	4.16	7.20		
		Solution Model (2080)	1	78	Y	1.48	4.16	7.20		
		Short Term Development Model (2030)	3	333	Y	0.70	1.53	2.52		
Greenhills WwPS	SW68697911_We tWell	Long Term Development Model (2055)	2	327	Y	0.70	1.53	2.52	Moneygurney River	
		Full Development Model (2080)	3	315	Y	0.70	1.53	2.52		
	SW68697919_DU M	Solution Model (2080)	1	80	Y	0.70	1.53	2.52		
		Short Term Development Model (2030)	-	-	Y	2.01	4.01	4.01		
Gweedore Avenue SWO	SW69739812	Long Term Development Model (2055)	-	-	Y	2.01	4.01	4.01	River Bride	
		Full Development Model (2080)	-	-	Y	2.01	4.01	4.01		
		Solution Model (2080)	DECOMMISSIONED							

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Halting Site Carrigrohane WwPS	SW63715201_WW	Short Term Development Model (2030)	-	-	Y	-	-	-	Unknown
		Long Term Development Model (2055)	-	-	Y	-	-	-	
		Full Development Model (2080)	-	-	Y	-	-	-	
		Solution Model (2080)	DECOMMISSIONED						
Hardwick Street SWO	SW67726209_WEIR1	Short Term Development Model (2030)	8	1,598	Y	4.24	8.73	12.36	River Lee Estuary Upper
		Long Term Development Model (2055)	10	1,911	Y	4.24	8.73	12.36	
		Full Development Model (2080)	9	1,692	Y	4.24	8.73	12.36	
		Solution Model (2080)	-	-	Y	4.24	8.73	12.36	
Harty Quay SWO	SW73690501	Short Term Development Model (2030)	-	-	Y	0.50	1.50	1.50	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	0.50	1.50	1.50	
		Full Development Model (2080)	-	-	Y	0.50	1.50	1.50	
		Solution Model (2080)	DECOMMISSIONED						
Hazelhurst Sunday's Well SWO	SW65719807_WEIR2	Short Term Development Model (2030)	21	4,817	Y	6.46	11.83	16.17	River Lee Estuary Upper

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	24	5,609	Y	6.46	11.83	16.17	
		Full Development Model (2080)	25	5,562	Y	6.46	11.83	16.17	
		Solution Model (2080)	3	788	Y	6.46	11.83	16.17	
High Street SWO	SW67718111_WE IR	Short Term Development Model (2030)	2	126	Y	1.20	1.61	2.86	River Lee Estuary Upper
		Long Term Development Model (2055)	2	224	Y	1.20	1.61	2.86	
		Full Development Model (2080)	1	140	Y	1.20	1.61	2.86	
		Solution Model (2080)	-	-	Y	1.20	1.61	2.86	
Horgans Quay Siphon WwPS	SW68722004_WE IR1	Short Term Development Model (2030)	10	201,071	Y	557.62	1,259.42	1,540.30	River Lee Estuary Lower
	SW68722004_WE IR1	Long Term Development Model (2055)	12	293,783	Y	598.36	1,363.85	1,644.73	
	SW68722004_WE IR1	Full Development Model (2080)	14	323,295	Y	618.79	1,415.78	1,696.66	
		Solution Model (2080)	0	860	Y	579.02	1,315.98	1,596.86	
Jn Dunbar ST SWO	SW67716401	Short Term Development Model (2030)	0	102	Y	2.45	5.35	6.84	River Lee Estuary Upper
		Long Term Development Model (2055)	1	265	Y	2.45	5.35	6.84	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	1	50	Y	2.45	5.35	6.84	
		Solution Model (2080)	-	-	Y	2.45	5.35	6.84	
John Redmond Street SWO	SW67724108_WE IR2	Short Term Development Model (2030)	4	537	Y	1.91	4.69	7.28	River Lee Estuary Upper
		Long Term Development Model (2055)	4	726	Y	1.91	4.69	7.28	
		Full Development Model (2080)	4	544	Y	1.91	4.69	7.28	
		Solution Model (2080)	-	-	Y	1.91	4.69	7.28	
		Short Term Development Model (2030)	8	1,170	Y	25.73	37.54	46.72	
Keyser's Hill SWO	SW67711409_WE IR2	Long Term Development Model (2055)	9	1,346	Y	25.73	37.54	46.72	River Lee Estuary Upper
		Full Development Model (2080)	8	1,201	Y	25.73	37.54	46.72	
		Solution Model (2080)	1	117	Y	28.43	45.63	67.10	
		Short Term Development Model (2030)	-	-	Y	1.33	3.40	3.40	
Kileens WwTP	Killeen_WWTP	Long Term Development Model (2055)	-	-	Y	2.05	5.22	5.22	River Lee Estuary Upper
		Full Development Model (2080)	-	-	Y	2.28	5.83	5.83	
		Solution Model (2080)	8	1,234	Y	2.28	5.83	5.83	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Kingsley WwPS	SW65712303	Short Term Development Model (2030)	-	-	Y	1.49	3.74	4.01	River Lee Estuary Upper
		Long Term Development Model (2055)	-	-	Y	1.49	3.74	4.01	
		Full Development Model (2080)	-	-	Y	1.49	3.74	4.01	
		Solution Model (2080)	-	-	Y	1.49	3.74	4.01	
Little Island Interchange WwPS	SW75729903	Short Term Development Model (2030)	-	-	Y	11.11	26.74	26.74	Tibbotstown River
		Long Term Development Model (2055)	-	-	Y	13.35	32.46	32.46	
		Full Development Model (2080)	-	-	Y	14.21	34.66	34.66	
		Solution Model (2080)	2	250	Y	14.21	34.66	34.66	
Lower Glanmire Road No.112, N8 SWO	SW68727303	Short Term Development Model (2030)	-	-	Y	46.69	71.85	103.30	River Lee Estuary Upper
		Long Term Development Model (2055)	1	95	Y	46.72	71.91	103.37	
		Full Development Model (2080)	-	-	Y	47.00	72.65	104.11	
		Solution Model (2080)	-	-	Y	47.00	72.65	104.11	
Lower Glanmire Road SWO	SW68721203_WE IR1	Short Term Development Model (2030)	-	-	Y	0.17	0.50	1.52	River Lee Estuary Upper

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	-	-	Y	0.17	0.50	1.52	
		Full Development Model (2080)	-	-	Y	0.17	0.50	1.52	
		Solution Model (2080)	-	-	Y	0.17	0.50	1.52	
Mary Street SWO	SW67714312_WE IR	Short Term Development Model (2030)	1	57	Y	1.34	2.02	2.02	River Lee Estuary Upper
		Long Term Development Model (2055)	2	110	Y	1.34	2.02	2.02	
		Full Development Model (2080)	1	74	Y	1.34	2.02	2.02	
		Solution Model (2080)	-	-	Y	1.34	2.02	2.02	
Mahon North WwPS	SW72717409_W W1	Short Term Development Model (2030)	-	-	Y	18.52	35.59	37.61	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	18.58	35.73	37.75	
		Full Development Model (2080)	-	-	Y	19.11	37.08	39.10	
		Solution Model (2080)	-	-	Y	19.11	37.08	39.10	
Mahon South WwPS	SW73700501_W W	Short Term Development Model (2030)	-	-	Y	31.60	88.57	88.57	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	32.10	89.83	89.83	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody	
	SW73700501_WW	Full Development Model (2080)	-	-	Y	35.66	100.51	100.51		
		Solution Model (2080)	-	-	Y	35.66	100.51	100.51		
Melborn Road (Dual MH)	SW63706102	Short Term Development Model (2030)	-	-	Y	0.10	0.31	0.31	Curragheen River	
		Long Term Development Model (2055)	-	-	Y	0.10	0.31	0.31		
		Full Development Model (2080)	-	-	Y	0.10	0.31	0.31		
		Solution Model (2080)	DECOMMISSIONED							
		Short Term Development Model (2030)	-	-	Y	0.15	0.46	0.46		
Melbourn Road Jn Allendale (Dual MH)	SW63707004	Long Term Development Model (2055)	-	-	Y	0.15	0.46	0.46	Curragheen River	
		Full Development Model (2080)	-	-	Y	0.15	0.46	0.46		
		Solution Model (2080)	DECOMMISSIONED							
		Short Term Development Model (2030)	-	-	Y	0.12	0.36	0.36		
Melbourn Road Jn Woburn Dr (Dual MH)	SW63697903	Long Term Development Model (2055)	-	-	Y	0.12	0.36	0.36	Curragheen River	
		Full Development Model (2080)	-	-	Y	0.12	0.36	0.36		
		Solution Model (2080)	DECOMMISSIONED							

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Murmont Park DS (Dual MH)	SW69734204	Short Term Development Model (2030)	-	-	Y	0.20	0.32	0.51	Unknown
		Long Term Development Model (2055)	-	-	Y	0.20	0.32	0.51	
		Full Development Model (2080)	-	-	Y	0.20	0.32	0.51	
		Solution Model (2080)	DECOMMISSIONED						
Murmont Park (Dual MH)	SW69735202	Short Term Development Model (2030)	-	-	Y	0.20	0.32	0.51	Unknown
		Long Term Development Model (2055)	-	-	Y	0.20	0.32	0.51	
		Full Development Model (2080)	-	-	Y	0.20	0.32	0.51	
		Solution Model (2080)	DECOMMISSIONED						
N27 1 (Dual MH)**	SW68701703	Short Term Development Model (2030)	-	-	Y	3.79	11.38	12.46	Glasheen River
		Long Term Development Model (2055)	-	-	Y	3.79	11.38	12.46	
		Full Development Model (2080)	-	-	Y	3.79	11.38	12.46	
		Solution Model (2080)	DECOMMISSIONED						
N27 2 (Dual MH)	SW68701960	Short Term Development Model (2030)	-	-	Y	73.29	219.88	220.96	Glasheen River

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	-	-	Y	73.29	219.88	220.96	
		Full Development Model (2080)	-	-	Y	73.29	219.88	220.96	
		Solution Model (2080)	DECOMMISSIONED						
N27 3 (Dual MH)	SW68711003	Short Term Development Model (2030)	-	-	Y	73.29	219.88	220.96	Glasheen River
		Long Term Development Model (2055)	-	-	Y	73.29	219.88	220.96	
		Full Development Model (2080)	-	-	Y	73.29	219.88	220.96	
		Solution Model (2080)	DECOMMISSIONED						
N27 4 (Dual MH)	SW68712160	Short Term Development Model (2030)	-	-	Y	73.29	219.88	220.96	Glasheen River
		Long Term Development Model (2055)	-	-	Y	73.29	219.88	220.96	
		Full Development Model (2080)	-	-	Y	73.29	219.88	220.96	
		Solution Model (2080)	DECOMMISSIONED						
N27 8 (Dual MH)	SW68712406	Short Term Development Model (2030)	-	-	Y	73.94	221.57	222.65	Glasheen River
		Long Term Development Model (2055)	-	-	Y	73.94	221.57	222.65	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	-	-	Y	73.94	221.57	222.65	
		Solution Model (2080)			DECOMMISSIONED				
N27, North of Old Blackrock Road passing SWO**	SW68712304	Short Term Development Model (2030)	-	-	Y	73.37	220.11	221.19	Glasheen River
		Long Term Development Model (2055)	-	-	Y	73.37	220.11	221.19	
		Full Development Model (2080)	-	-	Y	73.37	220.11	221.19	
		Solution Model (2080)			DECOMMISSIONED				
N27, South of Old Blackrock Road passing SWO	SW68712203	Short Term Development Model (2030)	-	-	Y	73.37	220.11	221.19	Glasheen River
		Long Term Development Model (2055)	-	-	Y	73.37	220.11	221.19	
		Full Development Model (2080)	-	-	Y	73.37	220.11	221.19	
		Solution Model (2080)			DECOMMISSIONED				
O'Donovan Rossa Road SWO	SW66714404	Short Term Development Model (2030)	50	27,451	N	4.16	8.51	12.50	River Lee Estuary Upper
	SW66714404	Long Term Development Model (2055)	49	28,860	N	4.16	8.51	12.50	
	SW66714404_WE IR	Full Development Model (2080)	51	29,700	N	4.16	8.51	12.50	
		Solution Model (2080)	4	704	Y	4.16	8.51	12.50	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Old Communiton Chamber Storm Tank	SW72695409_Overflow	Short Term Development Model (2030)	6	42,672	Y	201.81	484.36	569.30	Lough Mahon
	SW72695409_Overflow	Long Term Development Model (2055)	7	58,376	Y	225.86	545.67	630.62	
	SW72695409_Overflow	Full Development Model (2080)	8	69,893	Y	234.72	568.25	653.20	
		Solution Model (2080)	1	10,120	Y	234.72	568.25	653.20	
Old Communiton Chamber SWO	SW72694601_DUM	Short Term Development Model (2030)	-	-	Y	201.81	484.36	569.30	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	225.86	545.67	630.62	
		Full Development Model (2080)	-	-	Y	234.72	568.25	653.20	
		Solution Model (2080)	-	-	Y	234.72	568.25	653.20	
Old Tennis Village SWO	SW63711050	Short Term Development Model (2030)	-	-	Y	0.86	2.27	2.27	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.86	2.27	2.27	
		Full Development Model (2080)	-	-	Y	0.86	2.27	2.27	
		Solution Model (2080)	DECOMMISSIONED						
Orchard Court SWO	SW65712102_DUM	Short Term Development Model (2030)	SOLUTION ONLY						

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody	
		Long Term Development Model (2055)	SOLUTION ONLY							
		Full Development Model (2080)	SOLUTION ONLY							
		Solution Model (2080)	9	39,461	Y	235.98	617.18	772.15		
Our Lady's Hospital SWO	SW64718601_WE IR2	Short Term Development Model (2030)	-	-	Y	2.51	7.41	8.97	River Lee Estuary Upper	
		Long Term Development Model (2055)	-	-	Y	2.51	7.41	8.97		
		Full Development Model (2080)	-	-	Y	2.51	7.41	8.97		
		Solution Model (2080)	DECOMMISSIONED							
Park Avenue SWO	SW70712507_WE IR2	Short Term Development Model (2030)	79	55,277	N	9.46	18.76	25.53	River Lee Estuary Lower	
		Long Term Development Model (2055)	77	59,371	N	9.46	18.76	25.53		
		Full Development Model (2080)	79	62,089	N	9.46	18.76	25.53		
		Solution Model (2080)	13	6,495	Y	9.46	18.76	25.53		
Park Court SWO	SW68737910	Short Term Development Model (2030)	-	-	Y	5.73	14.70	15.21	Unknown	
		Long Term Development Model (2055)	-	-	Y	8.51	21.80	22.31		

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	-	-	Y	8.67	22.26	22.77	
		Solution Model (2080)			DECOMMISSIONED				
Paul Street SWO	SW67712911	Short Term Development Model (2030)	-	-	Y	-	-	-	River Lee Estuary Upper
		Long Term Development Model (2055)	-	-	Y	-	-	-	
		Full Development Model (2080)	-	-	Y	-	-	-	
		Solution Model (2080)			DECOMMISSIONED				
Popes Road SWO	SW67724812_WE IR1	Short Term Development Model (2030)	3	329	Y	8.41	11.46	14.11	River Bride
		Long Term Development Model (2055)	3	505	Y	8.41	11.46	14.11	
		Full Development Model (2080)	2	392	Y	8.41	11.46	14.11	
		Solution Model (2080)	1	41	Y	8.41	11.46	14.11	
Pophams Road SWO	SW67734716_WE IR1	Short Term Development Model (2030)	30	9,965	Y	24.76	42.07	67.32	River Bride
		Long Term Development Model (2055)	32	11,313	Y	24.76	42.07	67.32	
		Full Development Model (2080)	35	11,386	Y	24.76	42.07	67.32	
		Solution Model (2080)	1	163	Y	24.76	42.07	67.32	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Priest's Hill SWO	SW78730150	Short Term Development Model (2030)	15	3,944	Y	5.26	13.66	13.66	Lough Mahon (Harper's Island)
		Long Term Development Model (2055)	20	5,414	Y	7.51	19.38	19.38	
		Full Development Model (2080)	22	5,987	Y	8.37	21.58	21.58	
		Solution Model (2080)	-	-	Y	8.37	21.58	21.58	
R843 SWO	SW65714507	Short Term Development Model (2030)	-	-	Y	1.75	4.48	5.82	River Lee Estuary Upper
		Long Term Development Model (2055)	-	-	Y	1.75	4.48	5.82	
		Full Development Model (2080)	-	-	Y	1.75	4.48	5.82	
		Solution Model (2080)	-	-	Y	1.75	4.48	5.82	
Railway Yard WwPS	SW68727201	Short Term Development Model (2030)	-	-	Y	0.34	0.62	0.62	River Lee Estuary Lower
		Long Term Development Model (2055)	-	-	Y	0.34	0.62	0.62	
		Full Development Model (2080)	-	-	Y	0.34	0.62	0.62	
		Solution Model (2080)	-	-	Y	0.34	0.62	0.62	
Ringmahon Road, Eden Court SWO	SW72717408	Short Term Development Model (2030)	-	-	Y	13.58	20.75	22.58	Lough Mahon

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	-	-	Y	13.58	20.75	22.58	
		Full Development Model (2080)	-	-	Y	13.58	20.75	22.58	
		Solution Model (2080)	DECOMMISSIONED						
Ringmahon Road, Dual MH	SW72710304	Short Term Development Model (2030)	-	-	Y	0.41	1.24	1.24	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	0.41	1.24	1.24	
		Full Development Model (2080)	-	-	Y	0.41	1.24	1.24	
		Solution Model (2080)	DECOMMISSIONED						
Riverbank, Douglas SWO	SW69699613_DN 1	Short Term Development Model (2030)	-	-	Y	25.52	51.71	109.90	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	25.68	52.09	110.27	
	SW70690605	Full Development Model (2080)	-	-	Y	26.69	55.14	113.33	
		Solution Model (2080)	DECOMMISSIONED						
Riverview Estate 1 (Dual MH)	SW68737601	Short Term Development Model (2030)	-	-	Y	0.08	0.21	0.45	River Bride
		Long Term Development Model (2055)	-	-	Y	0.08	0.21	0.45	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody	
		Full Development Model (2080)	-	-	Y	0.08	0.21	0.45		
		Solution Model (2080)	-	-	Y	0.08	0.21	0.45		
Riverview Estate 2 (Dual MH)	SW68737602	Short Term Development Model (2030)	-	-	Y	0.04	0.10	0.35	River Bride	
		Long Term Development Model (2055)	-	-	Y	0.04	0.10	0.35		
		Full Development Model (2080)	-	-	Y	0.04	0.10	0.35		
		Solution Model (2080)	-	-	Y	0.04	0.10	0.35		
		Short Term Development Model (2030)	-	-	Y	0.08	0.21	0.45		
Riverview Estate DS (Dual MH)	SW68737707	Long Term Development Model (2055)	-	-	Y	0.08	0.21	0.45	River Bride	
		Full Development Model (2080)	-	-	Y	0.08	0.21	0.45		
		Solution Model (2080)	SOLUTION ONLY							
		Short Term Development Model (2030)	SOLUTION ONLY							
Rochestown Inn WwPS	SW73691410_We tWell	Long Term Development Model (2055)	SOLUTION ONLY						Lough Mahon	
		Full Development Model (2080)	-	-	Y	11.38	20.96	21.60		
		Solution Model (2080)	DECOMMISSIONED							

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Rochestown Road SWO	SW72695406	Short Term Development Model (2030)	-	-	Y	11.22	21.18	22.98	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	11.23	21.22	23.03	
		Full Development Model (2080)	-	-	Y	11.36	21.59	23.40	
		Solution Model (2080)	DECOMMISSIONED						
Rock Cottages North Mall SWO (Abbey Street North SWO)	SW66729207_WE IR1	Short Term Development Model (2030)	41	79,253	N	26.11	58.16	102.46	River Lee Estuary Upper
		Long Term Development Model (2055)	40	85,858	N	26.11	58.16	102.46	
	SW66729207_WE IR2	Full Development Model (2080)	40	88,834	N	26.11	58.16	102.46	
		Solution Model (2080)	9	17,456	Y	26.11	58.16	102.46	
Rosebank SWO	SW68709008	Short Term Development Model (2030)	89	108,883	N	6.68	17.95	40.13	Moneygurney River
	SW68709008	Long Term Development Model (2055)	89	115,375	N	6.76	18.16	40.34	
	SW68709008_DN 2	Full Development Model (2080)	90	120,470	N	7.69	20.52	42.71	
		Solution Model (2080)	1	172	Y	7.69	20.52	42.71	
Rossa Avenue WwPS	SW63705015_WE IR2	Short Term Development Model (2030)	127	74,848	N	1.80	4.39	11.93	Curragheen River

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	121	78,415	N	1.86	4.57	12.11	
		Full Development Model (2080)	123	80,105	N	1.86	4.57	12.11	
		Solution Model (2080)	3	1,195	Y	1.86	4.57	12.11	
Rossbrook WwPS	SW62708770	Short Term Development Model (2030)	-	-	Y	0.51	1.54	2.10	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.51	1.54	2.10	
		Full Development Model (2080)	-	-	Y	0.51	1.54	2.10	
		Solution Model (2080)	DECOMMISSIONED						
Shandon Street SWO	SW67720221	Short Term Development Model (2030)	63	56,234	N	30.77	68.40	125.83	River Lee Estuary Upper
	SW67720221	Long Term Development Model (2055)	61	60,873	N	30.77	68.40	125.83	
	SW67720221_WE IR1	Full Development Model (2080)	64	62,353	N	30.77	68.40	125.83	
		Solution Model (2080)	1	316	Y	30.77	68.40	125.83	
Silversprings Lane SWO	SW70727506	Short Term Development Model (2030)	-	-	Y	28.33	48.82	63.75	River Lee Estuary Lower
		Long Term Development Model (2055)	-	-	Y	28.33	48.82	63.75	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody	
	SW70727506_WE IR	Full Development Model (2080)	-	-	Y	28.33	48.82	63.75		
		Solution Model (2080)	2	1,381	Y	28.33	48.82	63.75		
Skehard Road SWO (Clover Lawn SWO)	SW71702713	Short Term Development Model (2030)	174	186,941	N	7.28	21.75	40.75	Lough Mahon	
		Long Term Development Model (2055)	166	190,607	N	7.28	21.75	40.75		
		Full Development Model (2080)	172	195,522	N	7.28	21.75	40.75		
		Solution Model (2080)	DECOMMISSIONED							
		Short Term Development Model (2030)	39	5,859	Y	11.37	27.42	61.32		
South Douglas Road SWO	SW69694706	Long Term Development Model (2055)	41	6,465	Y	11.52	27.80	61.69	Moneygurney River	
		Full Development Model (2080)	43	6,739	Y	13.12	31.87	66.77		
		Solution Model (2080)	1	123	Y	13.12	31.87	66.77		
		Short Term Development Model (2030)	12	3,422	Y	4.02	9.11	16.38		
South Ring Road SWO	SW66692307_DN _2	Long Term Development Model (2055)	14	4,188	Y	4.02	9.11	16.38	Unknown	
		Full Development Model (2080)	16	3,950	Y	4.02	9.11	16.38		
		Solution Model (2080)	DECOMMISSIONED							

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Southern Road SWO	SW67719104	Short Term Development Model (2030)	53	66,245	N	34.81	77.54	152.26	River Lee Estuary Upper
		Long Term Development Model (2055)	52	73,494	N	34.85	77.65	152.36	
		Full Development Model (2080)	56	77,078	N	35.23	78.62	153.34	
		Solution Model (2080)	11	14,687	Y	35.23	78.62	153.34	
Southern Road, No.1 SWO	SW67719203_WE IR	Short Term Development Model (2030)	82	36,561	N	24.13	51.94	113.04	River Lee Estuary Upper
		Long Term Development Model (2055)	81	37,424	N	24.13	51.94	113.04	
		Full Development Model (2080)	81	39,004	N	24.13	51.94	113.04	
		Solution Model (2080)	-	-	Y	-	-	-	
St. Finbarr's Hospital SWO	SW68701606_SL UICE	Short Term Development Model (2030)	22	7,070	N	3.37	10.12	11.20	Moneygurney River
		Long Term Development Model (2055)	25	8,218	N	3.37	10.12	11.20	
		Full Development Model (2080)	26	8,047	N	3.37	10.12	11.20	
		Solution Model (2080)	4	1,879	Y	3.37	10.12	11.20	
St. Finbarr's Place SWO	SW67710401_WE IR2	Short Term Development Model (2030)	12	2,373	Y	26.33	40.40	60.92	River Lee Estuary Upper

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	15	2,785	Y	26.33	40.40	60.92	
		Full Development Model (2080)	16	2,673	Y	26.33	40.40	60.92	
		Solution Model (2080)	-	-	Y	26.33	40.40	60.92	
Stratton Pines WwPS	SW64692307_WW	Short Term Development Model (2030)	-	-	Y	0.77	1.53	2.15	Glasheen River
		Long Term Development Model (2055)	-	-	Y	0.77	1.53	2.15	
		Full Development Model (2080)	-	-	Y	0.77	1.53	2.15	
		Solution Model (2080)	-	-	Y	0.77	1.53	2.15	
Summerhill North SWO	SW68720109_WEIR1	Short Term Development Model (2030)	175	239,964	N	30.37	55.67	96.86	River Lee Estuary Upper
		Long Term Development Model (2055)	167	249,204	N	30.40	55.73	96.92	
		Full Development Model (2080)	173	255,652	N	30.69	56.48	97.66	
		Solution Model (2080)	12	4,059	Y	30.69	56.48	97.66	
Summerhill South SWO	SW67718105	Short Term Development Model (2030)	44	37,252	N	6.76	14.14	28.85	River Lee Estuary Upper
	SW67718105	Long Term Development Model (2055)	43	39,432	N	6.76	14.14	28.85	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
	SW67718105_WE IR1	Full Development Model (2080)	45	40,845	N	6.76	14.14	28.85	River Lee Estuary Upper
	SW67718105_WE IR2	Solution Model (2080)	-	-	Y	6.76	14.14	28.85	
Sunday's Well WwPS	SW65714616	Short Term Development Model (2030)	-	-	Y	1.77	4.54	6.03	River Lee Estuary Upper
		Long Term Development Model (2055)	-	-	Y	1.77	4.54	6.03	
		Full Development Model (2080)	-	-	Y	1.77	4.54	6.03	
		Solution Model (2080)	-	-	Y	1.77	4.54	6.03	
Sunview Place East SWO	SW68738209_WE IR1	Short Term Development Model (2030)	44	9,504	Y	12.13	15.29	20.52	River Bride
		Long Term Development Model (2055)	44	10,419	Y	12.13	15.29	20.52	
		Full Development Model (2080)	46	10,703	Y	12.13	15.29	20.52	
		Solution Model (2080)	2	578	Y	12.13	15.29	20.52	
Thomas Davis Street SWO	SW67735317_WE IR1	Short Term Development Model (2030)	3	388	Y	61.46	133.03	147.57	River Bride
		Long Term Development Model (2055)	3	553	Y	68.04	149.71	164.26	
		Full Development Model (2080)	3	409	Y	70.68	156.44	170.99	
		Solution Model (2080)	-	-	Y	70.68	156.44	170.99	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody	
Tivoli Industrial Estate WwPS	SW71723202	Short Term Development Model (2030)	-	-	Y	0.84	1.90	1.90	River Lee	
		Long Term Development Model (2055)	-	-	Y	0.84	1.90	1.90		
		Full Development Model (2080)	DECOMMISSIONED							
		Solution Model (2080)	DECOMMISSIONED							
Tivoli WwPS	SW70726429	Short Term Development Model (2030)	5	3,787	Y	46.76	74.92	93.11	River Lee Estuary Lower	
		Long Term Development Model (2055)	7	4,024	Y	47.32	76.34	94.53		
		Full Development Model (2080)	7	7,354	Y	47.79	77.53	95.73		
		Solution Model (2080)	-	-	Y	47.79	77.53	95.73		
Togher Community Park SWO	SW66692208	Short Term Development Model (2030)	SOLUTION ONLY							
		Long Term Development Model (2055)	SOLUTION ONLY							
		Full Development Model (2080)	SOLUTION ONLY							
		Solution Model (2080)	-	-	Y	3.97	8.95	17.51		
Trafalgar Hill SWO	SW70724309_WE IR1	Short Term Development Model (2030)	1	146	Y	1.76	3.24	5.21	River Lee Estuary Lower	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	2	328	Y	1.81	3.36	5.33	
		Full Development Model (2080)	2	267	Y	2.28	4.56	6.53	
		Solution Model (2080)	-	-	Y	2.28	4.56	6.53	
Travers Street SWO	SW67714307_WE IR	Short Term Development Model (2030)	6	497	Y	1.78	2.34	3.53	River Lee Estuary Upper
		Long Term Development Model (2055)	7	598	Y	1.78	2.34	3.53	
		Full Development Model (2080)	7	571	Y	1.78	2.34	3.53	
		Solution Model (2080)	-	-	Y	1.78	2.34	3.53	
Turner's Cross SWO	SW67708111_WE IR2	Short Term Development Model (2030)	28	18,213	Y	17.29	40.02	76.50	Moneygurney River
		Long Term Development Model (2055)	29	20,271	Y	17.33	40.12	76.60	
		Full Development Model (2080)	33	20,410	Y	17.71	41.10	77.58	
		Solution Model (2080)	3	2,463	Y	17.71	41.10	77.58	
Uam Var Drive SWO	SW63693903	Short Term Development Model (2030)	-	-	Y	0.60	1.50	4.15	Curragheen River
		Long Term Development Model (2055)	-	-	Y	0.60	1.50	4.15	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	-	-	Y	0.60	1.50	4.15	
		Solution Model (2080)			DECOMMISSIONED				
University Hall WwPS	SW65712118_WW	Short Term Development Model (2030)	-	-	Y	-	-	-	Curragheen River
		Long Term Development Model (2055)	-	-	Y	-	-	-	
		Full Development Model (2080)	-	-	Y	-	-	-	
		Solution Model (2080)			DECOMMISSIONED				
Upper John Street SWO	SW67723509_WEIR2	Short Term Development Model (2030)	1	88	Y	0.41	1.23	3.53	River Bride
		Long Term Development Model (2055)	1	185	Y	0.41	1.23	3.53	
		Full Development Model (2080)	1	85	Y	0.41	1.23	3.53	
		Solution Model (2080)	-	-	Y	0.41	1.23	3.53	
Ursuline Convent SWO	SW71715602	Short Term Development Model (2030)	11	4,061	N	1.62	4.86	5.91	River Lee Estuary Lower
		Long Term Development Model (2055)	12	4,553	N	1.62	4.86	5.91	
	SW71715602_WEIR	Full Development Model (2080)	14	4,466	N	1.62	4.86	5.91	
		Solution Model (2080)	2	570	Y	1.62	4.86	5.91	

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Victoria Hospital SWO	SW68710201_WE IR2	Short Term Development Model (2030)	52	7,309	N	0.84	1.55	2.21	River Lee Estuary Upper
		Long Term Development Model (2055)	52	7,847	N	0.84	1.55	2.21	
		Full Development Model (2080)	55	8,097	N	0.84	1.55	2.21	
		Solution Model (2080)	-	-	Y	0.84	1.55	2.21	
Wallingstown WwPS	SW74715202	Short Term Development Model (2030)	-	-	Y	77.09	223.27	223.27	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	77.09	223.27	223.27	
		Full Development Model (2080)	-	-	Y	77.09	223.27	223.27	
		Solution Model (2080)	-	-	Y	77.09	223.27	223.27	
Westbury Grove SWO	SW65695101	Short Term Development Model (2030)	-	-	Y	2.27	5.68	5.68	Glasheen River
		Long Term Development Model (2055)	-	-	Y	2.27	5.68	5.68	
		Full Development Model (2080)	-	-	Y	2.27	5.68	5.68	
		Solution Model (2080)	DECOMMISSIONED						
Wherelands Lane SWO	SW67734406_WE IR2	Short Term Development Model (2030)	160	187,632	N	39.05	56.93	83.36	River Bride

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody			
		Long Term Development Model (2055)	153	196,796	N	39.05	56.94	83.38				
		Full Development Model (2080)	159	200,840	N	39.12	57.09	83.52				
		Solution Model (2080)	9	3,608	Y	39.12	57.09	83.52				
Wilton WwPS	SW65692212_WW	Short Term Development Model (2030)	-	-	Y	13.27	33.98	34.21	Moneygurney River			
		Long Term Development Model (2055)	-	-	Y	34.93	88.83	89.07				
		Full Development Model (2080)	-	-	Y	37.58	95.86	96.09				
		Solution Model (2080)	-	-	Y	37.58	95.86	96.09				
Wise's Quay SWO	SW66727002	Short Term Development Model (2030)	SOLUTION ONLY							River Lee Estuary Upper		
		Long Term Development Model (2055)	SOLUTION ONLY									
		Full Development Model (2080)	SOLUTION ONLY									
		Solution Model (2080)	2	1,053	Y	37.74	80.07	92.74				
Woodbrook Gurrane Lane SWO	SW64693504_WEIR2	Short Term Development Model (2030)	161	146,707	N	7.54	21.63	44.81	Glasheen River			
		Long Term Development Model (2055)	151	152,725	N	7.54	21.63	44.81				

Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	158	160,906	N	7.58	21.75	44.93	
		Solution Model (2080)	1	43	Y	7.58	21.75	44.93	
Woodhaven WwPS	SW64694301_WW	Short Term Development Model (2030)	-	-	Y	0.30	0.89	0.89	Groundwater
		Long Term Development Model (2055)	-	-	Y	0.30	0.89	0.89	
		Full Development Model (2080)	-	-	Y	0.30	0.89	0.89	
		Solution Model (2080)	-	-	Y	0.30	0.89	0.89	
Wyse's Hill SWO	SW66727102_WEIR2	Short Term Development Model (2030)	5	804	Y	25.36	51.17	75.49	River Lee Estuary Upper
		Long Term Development Model (2055)	6	1,028	Y	25.36	51.17	75.49	
		Full Development Model (2080)	5	840	Y	25.36	51.17	75.49	
		Solution Model (2080)	-	-	Y	25.36	51.17	75.49	
York Street SWO	SW67729205_WEIR2	Short Term Development Model (2030)	-	-	Y	12.60	20.89	38.75	River Lee Estuary Upper
		Long Term Development Model (2055)	1	122	Y	12.60	20.89	38.75	
		Full Development Model (2080)	-	-	Y	12.60	20.89	38.75	
		Solution Model (2080)	-	-	Y	12.60	20.89	38.75	

2. Cork Lower Harbour SWO Details

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Carrigaline Dunnes Network SWO	SW72629103	Short Term Development Model (2030)	-	-	Y	11.56	28.66	30.48	Owenboy Estuary
		Long Term Development Model (2055)	-	-	Y	11.58	28.72	30.54	
		Full Development Model (2080)	-	-	Y	11.64	28.90	30.72	
		Solution Model (2080)	-	-	Y	11.64	28.90	30.72	
Monkstown CSO (Strand Road)	Monkstown CSO_WE	Short Term Development Model (2030)	1	87	Y	2.77	6.83	17.68	Owenboy Estuary
		Long Term Development Model (2055)	1	56	Y	2.77	6.83	17.68	
		Full Development Model (2080)	1	284	Y	2.77	6.83	17.68	
		Solution Model (2080)	1	285	Y	2.77	6.83	17.68	
Station Weir SWO	C1.1	Short Term Development Model (2030)	1	66	Y	0.07	0.20	0.72	Cork Harbour
		Long Term Development Model (2055)	-	-	Y	0.07	0.20	0.72	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	1	96.00	Y	0.07	0.20	0.72	
		Solution Model (2080)	1	86.00	Y	0.07	0.20	0.72	
Church Road WwPS	Church Road Tank_1	Short Term Development Model (2030)	-	-	Y	90.00	233.53	245.55	Owenboy Estuary
		Long Term Development Model (2055)	1	86.00	Y	103.67	268.32	280.35	
		Full Development Model (2080)	1	382.00	Y	111.27	289.98	302.03	
		Solution Model (2080)	-	-	Y	111.27	289.98	302.03	
Coolmore Cross WwPS	SW76630206	Short Term Development Model (2030)	-	-	Y	0.50	1.23	1.90	Owenboy Estuary
		Long Term Development Model (2055)	-	-	Y	0.50	1.23	1.90	
		Full Development Model (2080)	-	-	Y	0.50	1.23	1.90	
		Solution Model (2080)	-	-	Y	0.50	1.23	1.90	
Cork Road WwPS	PS1	Short Term Development Model (2030)	-	-	Y	18.17	45.67	45.67	Groundwater
		Long Term Development Model (2055)	-	-	Y	19.63	49.34	49.34	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	1	134.00	Y	19.93	50.25	50.25	
		Solution Model (2080)	1	84.00	Y	19.93	50.25	50.25	
Crosshaven Road WwPS	CR_Storm Tank	Short Term Development Model (2030)	1	78.00	Y	5.56	14.17	15.63	Owenboy Estuary
		Long Term Development Model (2055)	1	62.00	Y	5.56	14.17	15.63	
		Full Development Model (2080)	1	188.00	Y	5.56	14.17	15.63	
		Solution Model (2080)	1	206.00	Y	5.56	14.17	15.63	
Crosshaven WwPS 2 (The Square)	PS2	Short Term Development Model (2030)	-	-	Y	20.87	52.16	52.16	Owenboy Estuary
		Long Term Development Model (2055)	-	-	Y	22.33	55.83	55.83	
		Full Development Model (2080)	-	-	Y	22.63	56.74	56.74	
		Solution Model (2080)	4	1,329.00	Y	22.63	56.74	56.74	
Crosshaven WwPS 1 (Car Park)	PS1_CarPark	Short Term Development Model (2030)	-	-	Y	18.17	45.67	45.67	Owenboy Estuary
		Long Term Development Model (2055)	-	-	Y	19.63	49.34	49.34	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	-	-	Y	19.93	50.25	50.25	
		Solution Model (2080)	-	-	Y	19.93	50.25	50.25	
Dock Cottages WwPS	DC2_1	Short Term Development Model (2030)	2	124.00	Y	0.11	0.32	1.13	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	0.11	0.32	1.13	
		Full Development Model (2080)	2	124.00	Y	0.11	0.32	1.13	
		Solution Model (2080)	-	-	Y	0.11	0.32	1.13	
Dockyard WwPS (Estuary Crossing WwPS)	MH B4 CSO	Short Term Development Model (2030)	1	479.00	Y	22.93	57.54	133.62	Lough Mahon
		Long Term Development Model (2055)	1	257.00	Y	24.35	61.14	137.22	
		Full Development Model (2080)	1	885.00	Y	29.40	74.11	150.19	
		Solution Model (2080)	3	2,101.00	Y	48.13	124.26	200.90	
Town Park WwPS (Attenuation Tank)	Attenuation Tank_Overflow MH	Short Term Development Model (2030)	7	5,039.00	Y	31.16	78.16	83.92	Owenboy Estuary
		Long Term Development Model (2055)	31	21,450.00	Y	43.35	109.22	114.98	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	272	121,588.00	N	50.59	129.77	135.53	
		Solution Model (2080)	1	1,718.00	Y	50.59	129.77	135.53	
Glenbrook WwPS	Glenbrook CSO	Short Term Development Model (2030)	-	-	Y	16.95	41.40	69.20	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	18.07	44.23	72.03	
		Full Development Model (2080)	-	-	Y	18.15	44.46	72.26	
		Solution Model (2080)	-	-	Y	18.15	44.46	72.26	
Lynch's Quay WwPS	GFE430	Short Term Development Model (2030)	-	-	Y	0.19	0.57	0.57	Owenboy Estuary
		Long Term Development Model (2055)	-	-	Y	0.19	0.57	0.57	
		Full Development Model (2080)	-	-	Y	0.19	0.57	0.57	
		Solution Model (2080)	-	-	Y	0.19	0.57	0.57	
Old Town Hall WwPS	Old Town Hall Storage	Short Term Development Model (2030)	6	5,001.00	Y	17.99	43.10	106.64	Cork Harbour
		Long Term Development Model (2055)	4	3,387.00	Y	19.47	46.87	110.83	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	8	7,451.00	Y	24.51	59.84	123.80	
		Solution Model (2080)	7	7,349.00	Y	24.46	59.67	123.21	
Old Waterpark WwPS	SW73621418	Short Term Development Model (2030)	-	-	Y	1.81	4.46	6.95	Owenboy Estuary
		Long Term Development Model (2055)	-	-	Y	1.81	4.46	6.95	
		Full Development Model (2080)	-	-	Y	1.81	4.46	6.95	
		Solution Model (2080)	-	-	Y	1.81	4.46	6.95	
Passage West Central WwPS	Passage West CSO	Short Term Development Model (2030)	-	-	Y	13.44	32.63	50.49	Cork Harbour
		Long Term Development Model (2055)	-	-	Y	14.20	34.57	52.43	
		Full Development Model (2080)	-	-	Y	14.25	34.70	52.56	
		Solution Model (2080)	-	-	Y	14.25	34.70	52.56	
Ringaskiddy Village WwPS	Storm Tank	Short Term Development Model (2030)	1	83.00	Y	5.56	14.17	15.63	Cork Harbour
		Long Term Development Model (2055)	-	-	Y	5.56	14.17	15.63	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	1	194.00	Y	5.56	14.17	15.63	
		Solution Model (2080)	1	242.00	Y	5.56	14.17	15.63	
Rushbrooke Hotel WwPS	MH J10	Short Term Development Model (2030)	-	-	Y	0.27	0.81	2.89	Lough Mahon
		Long Term Development Model (2055)	-	-	Y	0.27	0.81	2.89	
		Full Development Model (2080)	-	-	Y	0.27	0.81	2.89	
		Solution Model (2080)	-	-	Y	0.27	0.81	2.89	
Station Car Park WwPS	Station Rd PS	Short Term Development Model (2030)	1	92.00	Y	22.63	56.62	130.52	Cork Harbour
		Long Term Development Model (2055)	1	69.00	Y	24.05	60.22	134.12	
		Full Development Model (2080)	1	173.00	Y	29.09	73.19	147.09	
		Solution Model (2080)	2	217.00	Y	29.09	73.19	147.09	
Coast Road WwPS	PS5	Short Term Development Model (2030)	-	-	Y	0.43	1.07	2.64	Owenboy Estuary
		Long Term Development Model (2055)	-	-	Y	0.43	1.07	2.64	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	-	-	Y	0.43	1.07	2.64	
		Solution Model (2080)	-	-	Y	0.43	1.07	2.64	
Cow's Cross WwPS	Cow Cross PS	Short Term Development Model (2030)	-	-	Y	-	-	-	Cork Harbour
		Long Term Development Model (2055)	-	-	Y	-	-	-	
		Full Development Model (2080)	-	-	Y	-	-	-	
		Solution Model (2080)	-	-	Y	-	-	-	
North Cobh WwTP	SW78673501_PS	Short Term Development Model (2030)	-	-	Y	7.29	19.98	20.37	Cork Harbour
		Long Term Development Model (2055)	3	326.00	Y	13.93	36.90	37.29	
		Full Development Model (2080)	5	721.00	Y	14.08	37.49	37.88	
		Solution Model (2080)	5	683.00	Y	16.59	44.49	44.88	
North Cobh New WwPS	North Cobh New WwPS.2	Short Term Development Model (2030)	-	-	Y	-	-	-	Cork Harbour
		Long Term Development Model (2055)	-	-	Y	-	-	-	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	-	-	Y	-	-	-	
		Solution Model (2080)	1	158.00	Y	18.74	50.15	50.71	
Cork Lower Harbour WwTP	Storm Tank 2.1	Short Term Development Model (2030)	-	-	Y	-	-	-	Cork Harbour
		Long Term Development Model (2055)	-	-	Y	-	-	-	
		Full Development Model (2080)	2	2,928.00	Y	184.64	462.01	597.45	
		Solution Model (2080)	4	7,618.00	Y	400.19	941.92	1,181.79	
Cork Lower Harbour WwPS	SW75648405.1	Short Term Development Model (2030)	-	-	Y	20.01	37.78	45.78	Cork Harbour
		Long Term Development Model (2055)	-	-	Y	20.01	37.78	45.78	
		Full Development Model (2080)	-	-	Y	20.01	37.78	45.78	
		Solution Model (2080)	-	-	Y	20.01	37.78	45.78	

3. Ballincollig SWO Details

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Ballincollig WwTP Storm Tank	SW59712101_T ANK2	Short Term Development Model (2030)	5	10,706.00	Y	72.91	188.96	188.96	River Lee
		Long Term Development Model (2055)	5	12,766.00	Y	75.90	196.47	196.47	
		Full Development Model (2080)	7	15,442.00	Y	75.90	196.47	196.47	
		Solution Model (2080)	8	20,624.00	Y	75.90	196.47	196.47	
Carrigrohane WwPS	Storm Tank	Short Term Development Model (2030)	5	876.00	Y	2.77	6.57	6.57	River Lee
		Long Term Development Model (2055)	4	998.00	Y	2.77	6.57	6.57	
		Full Development Model (2080)	6	1,256.00	Y	2.77	6.57	6.57	
		Solution Model (2080)	5	1,179.00	Y	2.77	6.57	6.57	
Church Hill SWO	SW61713505	Short Term Development Model (2030)	-	-	Y	1.00	2.96	2.96	River Lee
		Long Term Development Model (2055)	-	-	Y	1.00	2.96	2.96	
		Full Development Model (2080)	-	-	Y	1.00	2.96	2.96	
		Solution Model (2080)	-	-	Y	1.00	2.96	2.96	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Church View 1 SWO	SW59701402	Short Term Development Model (2030)	-	-	Y	0.37	1.10	1.10	Groundwater
		Long Term Development Model (2055)	-	-	Y	0.37	1.10	1.10	
		Full Development Model (2080)	-	-	Y	0.37	1.10	1.10	
		Solution Model (2080)	-	-	Y	0.37	1.10	1.10	
Church View 2 SWO	SW59701403	Short Term Development Model (2030)	-	-	Y	0.50	1.49	1.49	Groundwater
		Long Term Development Model (2055)	-	-	Y	0.50	1.49	1.49	
		Full Development Model (2080)	-	-	Y	0.50	1.49	1.49	
		Solution Model (2080)	-	-	Y	0.50	1.49	1.49	
Leesdale WwPS	SW59717112	Short Term Development Model (2030)	1	122.00	Y	7.53	18.50	18.50	River Lee
		Long Term Development Model (2055)	1	150.00	Y	7.53	18.50	18.50	
		Full Development Model (2080)	1	160.00	Y	7.53	18.50	18.50	
		Solution Model (2080)	1	159.00	Y	7.53	18.50	18.50	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Maglin WwPS	SW59706007_OF	Short Term Development Model (2030)	8	8,154.00	Y	21.95	51.86	51.86	Curragheen River
		Long Term Development Model (2055)	12	13,328.00	Y	24.93	59.37	59.37	
		Full Development Model (2080)	13	16,142.00	Y	24.93	59.37	59.37	
		Solution Model (2080)	3	2,026.00	Y	24.93	59.37	59.37	
Powdermill WwPS	SW59711205	Short Term Development Model (2030)	1	286.00	Y	29.08	72.83	72.83	River Lee
		Long Term Development Model (2055)	1	315.00	Y	29.08	72.83	72.83	
		Full Development Model (2080)	2	478.00	Y	29.08	72.83	72.83	
		Solution Model (2080)	1	283.00	Y	29.08	72.83	72.83	

4. Carrigtwohill SWO Details

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Church Lane SWO	SW82730001	Short Term Development Model (2030)	-	-	Y	1.49	3.98	5.52	Tibbotstown Reservoir
		Long Term Development Model (2055)	-	-	Y	1.49	3.98	5.52	
		Full Development Model (2080)	-	-	Y	1.49	3.98	5.52	
		Solution Model (2080)	-	-	Y	1.49	3.98	5.52	
Elm Road SWO	SW82737005	Short Term Development Model (2030)	-	-	Y	0.59	1.58	2.35	Tibbotstown Reservoir
		Long Term Development Model (2055)	-	-	Y	0.59	1.58	2.35	
		Full Development Model (2080)	1	88.00	Y	0.59	1.58	2.35	
		Solution Model (2080)	1	93.00	Y	0.59	1.58	2.35	
Barryscourt WwPS	Barryscourt WWPS_Inlet Chamber	Short Term Development Model (2030)	-	-	Y	145.32	392.94	396.44	Tibbotstown Reservoir
		Long Term Development Model (2055)	-	-	Y	159.26	428.41	431.92	
		Full Development Model (2080)	-	-	Y	168.88	452.85	456.36	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
IDA No.1 WwPS	IDA No.1 WWPS_Storm Holding Tank	Solution Model (2080)	-	-	Y	171.63	459.76	463.27	
		Short Term Development Model (2030)	-	-	Y	18.75	56.26	56.59	Tibbotstown Reservoir
		Long Term Development Model (2055)	-	-	Y	18.75	56.26	56.59	
		Full Development Model (2080)	-	-	Y	18.75	56.26	56.59	
		Solution Model (2080)	-	-	Y	18.75	56.26	56.59	
Old Cobh Road WwPS	Old Cobh Road WWPS_Storm Wet Well	Short Term Development Model (2030)	-	-	Y	182.34	489.91	498.15	Groundwater
		Long Term Development Model (2055)	-	-	Y	200.60	536.35	544.59	
		Full Development Model (2080)	-	-	Y	210.86	562.45	570.69	
		Solution Model (2080)	-	-	Y	213.62	569.36	577.60	
Carrigtwohill WwTP	WWTP_Storm Tank No.1	Short Term Development Model (2030)	-	-	Y	202.63	550.72	559.30	Lough Mahon (Harper's Island)
		Long Term Development Model (2055)	-	-	Y	220.88	597.17	605.74	
		Full Development Model (2080)	6	8,245.00	Y	231.15	623.27	631.84	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Solution Model (2080)	6	9,876.00	Y	233.90	630.17	638.75	

5. Midleton SWO Details

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Drury's Avenue SWO	SW88731601	Short Term Development Model (2030)	21	1,987.00	N	0.35	0.70	0.70	Dungourney River
		Long Term Development Model (2055)	22	2,146.00	N	0.35	0.70	0.70	
		Full Development Model (2080)	25	2,408.00	N	0.35	0.70	0.70	
		Solution Model (2080)			Decommissioned				
Riversfield SWO	SW87736104	Short Term Development Model (2030)	70	12,439.00	N	0.97	2.90	2.90	Owenacurra River
		Long Term Development Model (2055)	70	12,880.00	N	0.97	2.90	2.90	
		Full Development Model (2080)	104	21,425.00	N	1.67	4.64	4.64	
		Solution Model (2080)			Decommissioned				
Bailick No.1 WwPS	SW88730107_ST ORM_OF	Short Term Development Model (2030)	32	18,584.00	Y	122.52	335.51	335.51	Owenacurra River
		Long Term Development Model (2055)	32	19,764.00	Y	123.01	336.76	336.76	
		Full Development Model (2080)	32	20,943.00	Y	127.25	347.57	347.57	
		Solution Model (2080)	4	5,131.00	Y	130.00	354.47	354.47	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Oakwood WwPS	SW88737101	Short Term Development Model (2030)	0	-	Y	0.21	0.63	0.63	Owenacurra River
		Long Term Development Model (2055)	0	-	Y	0.21	0.63	0.63	
		Full Development Model (2080)	0	-	Y	0.21	0.63	0.63	
		Solution Model (2080)	0	-	Y	0.21	0.63	0.63	
Bailick No.2 WwPS	SW88720503_W	Short Term Development Model (2030)	162	133,766.00	N	18.00	44.52	44.52	Owenacurra River
		Long Term Development Model (2055)	163	134,608.00	N	18.01	44.55	44.55	
		Full Development Model (2080)	171	143,284.00	N	18.60	45.99	45.99	
		Solution Model (2080)	6	3,477.00	Y	18.60	45.99	45.99	
Bailick No.3 WwPS	SW88723004	Short Term Development Model (2030)	0	-	Y	14.44	34.89	34.89	Owenacurra River
		Long Term Development Model (2055)	0	-	Y	14.45	34.92	34.92	
		Full Development Model (2080)	0	-	Y	15.04	36.37	36.37	
		Solution Model (2080)	0	-	Y	15.04	36.37	36.37	
Ballinacurra No.1 WwPS	SW88713706_Overflow	Short Term Development Model (2030)	1	1,364.00	Y	157.64	422.32	422.32	Owenacurra River
		Long Term Development Model (2055)	2	2,539.00	Y	170.11	454.04	454.04	
		Full Development Model (2080)	0	-	Y	179.36	477.47	477.47	
		Solution Model (2080)	0	119.00	Y	182.12	484.38	484.38	
Ballinacurra No.2 WwPS	SW88715704	Short Term Development Model (2030)	1	68.00	Y	7.06	16.08	16.08	Owenacurra River
		Long Term Development Model (2055)	1	192.00	Y	7.07	16.11	16.11	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	1	221.00	Y	7.06	16.08	16.08	
		Solution Model (2080)	1	214.00	Y	7.06	16.08	16.08	
Dwyers Road WwPS	SW87724905_CS0	Short Term Development Model (2030)	0	12.00	Y	139.64	377.80	377.80	Stream (unknown)
		Long Term Development Model (2055)	0	34.00	Y	152.10	409.49	409.49	
		Full Development Model (2080)	1	52.00	Y	160.76	431.48	431.48	
		Solution Model (2080)	5	2,654.00	Y	163.51	438.38	438.38	
Old Youghal Road WwPS	SW88737001	Short Term Development Model (2030)	1	77.00	Y	5.11	14.60	14.60	Owenacurra River
		Long Term Development Model (2055)	1	94.00	Y	5.11	14.60	14.60	
		Full Development Model (2080)	1	117.00	Y	5.11	14.60	14.60	
		Solution Model (2080)	1	122.00	Y	5.11	14.60	14.60	
Roxboro Housing Estate WwPS	SW88733302	Short Term Development Model (2030)	0	-	Y	0.08	0.25	0.25	Dungourney River
		Long Term Development Model (2055)	0	-	Y	0.08	0.25	0.25	
		Full Development Model (2080)	0	-	Y	0.08	0.25	0.25	
		Solution Model (2080)	0	-	Y	0.08	0.25	0.25	
Roxboro Mews WwPS	SW88733319	Short Term Development Model (2030)	0	-	Y	0.03	0.08	0.08	Dungourney River
		Long Term Development Model (2055)	0	-	Y	0.03	0.08	0.08	
		Full Development Model (2080)	0	-	Y	0.03	0.08	0.08	
		Solution Model (2080)	0	-	Y	0.03	0.08	0.08	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
The Rock WwPS	SW88732218	Short Term Development Model (2030)	0	-	Y	0.01	0.04	0.04	Dungourney River
		Long Term Development Model (2055)	0	-	Y	0.01	0.04	0.04	
		Full Development Model (2080)	0	-	Y	0.01	0.04	0.04	
		Solution Model (2080)	0	-	Y	0.01	0.04	0.04	

6. Cork Settlements SWO Details

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Ballygarvan WwTP	SW68633204_STW	Short Term Development Model (2030)	41	5,572.00	N	1.94	5.11	5.11	River Owenabue
		Long Term Development Model (2055)	49	6,767.00	N	2.23	5.85	5.85	
		Full Development Model (2080)	63	8,517.00	N	2.47	6.47	6.47	
		Solution Model (2080)	Decommissioned						
Grenagh WwTP**	SW58847706	Short Term Development Model (2030)	15	2,702.00	N	1.58	4.67	4.67	River Martin
		Long Term Development Model (2055)	19	3,435.00	N	1.97	5.66	5.66	
		Full Development Model (2080)	27	4,582.00	N	2.28	6.47	6.47	
		Solution Model (2080)	2	571.00	Y	2.28	6.47	6.47	
Halfway Carpark SWO	SW60614302	Short Term Development Model (2030)	5	495.00	Y	0.58	1.49	1.49	River Owenabue

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	6	594.00	Y	0.69	1.75	1.75	
		Full Development Model (2080)	8	737.00	Y	0.79	2.02	2.02	
		Solution Model (2080)	0	-	Y	0.79	2.02	2.02	
Cloghroe WwPS	SW57745006	Short Term Development Model (2030)	11	1,744.00	Y	1.95	5.23	5.23	Shournagh River
		Long Term Development Model (2055)	13	2,028.00	Y	1.95	5.23	5.23	
		Full Development Model (2080)	13	2,196.00	Y	1.95	5.23	5.23	
		Solution Model (2080)	5	1,027.00	Y	1.95	5.23	5.23	
Kerry Pike WwPS	SW60735407	Short Term Development Model (2030)	104	21,593.00	N	1.72	4.53	4.53	Shournagh River
		Long Term Development Model (2055)	109	23,900.00	N	2.07	5.42	5.42	
		Full Development Model (2080)	110	25,448.00	N	2.07	5.42	5.42	
		Solution Model (2080)	5	1,706.00	Y	2.07	5.42	5.42	
Gothic Bridge WwPS	SW61755307	Short Term Development Model (2030)	14	2,061.00	N	0.86	2.25	2.25	River Martin
		Long Term Development Model (2055)	22	3,612.00	N	1.73	4.47	4.47	
		Full Development Model (2080)	24	4,027.00	N	1.73	4.47	4.47	
		Solution Model (2080)	5	1,260.00	Y	1.73	4.47	4.47	
Blarney Storm Tank SWO	SW59742903_ST	Short Term Development Model (2030)	337	840,850.00	N	29.36	77.81	77.81	Shournagh River
		Long Term Development Model (2055)	366	1,329,735.00	N	44.30	115.97	115.97	
		Full Development Model (2080)	366	1,454,334.00	N	49.05	128.06	128.06	
		Solution Model (2080)	1	5,178.00	Y	49.05	128.06	128.06	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
Cloyne Riverside WwPS	SW91676907	Short Term Development Model (2030)	0	-	Y	0.11	0.29	0.29	Groundwater
		Long Term Development Model (2055)	0	-	Y	0.11	0.29	0.29	
		Full Development Model (2080)	0	-	Y	0.11	0.29	0.29	
		Solution Model (2080)	0	-	Y	0.11	0.29	0.29	
Dun Orga WwPS	SW91674905	Short Term Development Model (2030)	0	-	Y	0.17	0.42	0.42	Groundwater
		Long Term Development Model (2055)	0	-	Y	0.17	0.42	0.42	
		Full Development Model (2080)	0	-	Y	0.17	0.42	0.42	
		Solution Model (2080)	0	-	Y	0.17	0.42	0.42	
Cloyne WwTP	Cloyne WwTP_StormTank	Short Term Development Model (2030)	Not in 2030 Model						Spital Stream
		Long Term Development Model (2055)	0	-	Y	6.95	18.00	18.00	
		Full Development Model (2080)	0	-	Y	7.83	20.25	20.25	
		Solution Model (2080)	2	902.00	Y	10.13	26.32	26.32	
Cois Muileann WwPS	SW84814501_WwPS	Short Term Development Model (2030)	0	-	Y	0.07	0.16	0.16	Owenacurra River
		Long Term Development Model (2055)	0	-	Y	0.07	0.16	0.16	
		Full Development Model (2080)	0	-	Y	0.07	0.16	0.16	
		Solution Model (2080)	0	-	Y	0.07	0.16	0.16	
Environment Building WwPS	SW53727303_PS1	Short Term Development Model (2030)	0	-	Y	0.08	0.21	0.21	Groundwater
		Long Term Development Model (2055)	0	-	Y	0.20	0.52	0.52	

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Full Development Model (2080)	0	-	Y	0.30	0.79	0.79	
		Solution Model (2080)	Decommissioned						
Dipsey WwTP Storm Tank	SW48746803_ST	Short Term Development Model (2030)	10	993.00	Y	1.24	3.31	3.31	Dipsey River
		Long Term Development Model (2055)	12	1,252.00	Y	1.43	3.80	3.80	
		Full Development Model (2080)	14	1,499.00	Y	1.60	4.23	4.23	
		Solution Model (2080)	2	255.00	Y	1.55	4.08	4.08	
Dipsey WwTP Inlet	SW48746802_Overflow chamber	Short Term Development Model (2030)	3	292.00	Y	1.24	3.31	3.31	Dipsey River
		Long Term Development Model (2055)	3	328.00	Y	1.43	3.80	3.80	
		Full Development Model (2080)	4	394.00	Y	1.60	4.23	4.23	
		Solution Model (2080)	3	313.00	Y	1.55	4.08	4.08	
Minane Bridge WwTP	SW74561504_Stormwater holdingtank	Short Term Development Model (2030)	0	-	Y	0.35	0.84	0.84	Minane River
		Long Term Development Model (2055)	0	-	Y	0.52	1.27	1.27	
		Full Development Model (2080)	0	-	Y	0.64	1.57	1.57	
		Solution Model (2080)	Decommissioned						
Watergrasshill WwTP	SW77852307	Short Term Development Model (2030)	80	31,209.00	N	5.21	13.61	13.61	Flesk Stream
		Long Term Development Model (2055)	70	25,622.00	N	6.28	16.31	16.31	
		Full Development Model (2080)	75	28,751.00	N	7.08	18.33	18.33	
		Solution Model (2080)	8	5,773.00	Y	7.08	18.33	18.33	
Whitegate WwTP	Whitegate_StormTank	Short Term Development Model (2030)	0	-	Y	5.13	13.12	13.12	Cork Harbour

SWO Name	Node Reference	Scenario	Spill Frequency (>50m3)	Average Spill Volume (m3)	Pass 4% SWO Spill Criteria (Y/N)	DWF (l/s)	3DWF (l/s)	Formula A (l/s)	Receiving Waterbody
		Long Term Development Model (2055)	0	-	Y	6.29	16.03	16.03	
		Full Development Model (2080)	0	-	Y	6.29	16.03	16.03	
		Solution Model (2080)	0	-	Y	6.18	15.70	15.70	
Rostellan WwPS	Rostellan WwPS_StormTank	Short Term Development Model (2030)	2	160.00	Y	0.53	1.38	1.38	Cork Harbour
		Long Term Development Model (2055)	3	399.00	Y	0.84	2.15	2.15	
		Full Development Model (2080)	4	484.00	Y	0.84	2.15	2.15	
		Solution Model (2080)	1	205.00	Y	0.84	2.15	2.15	
Lower Aghada WwPS	Lower Aghada WwPS_Inlet	Short Term Development Model (2030)	1	78.00	Y	1.46	3.85	3.85	Cork Harbour
		Long Term Development Model (2055)	1	135.00	Y	2.10	5.47	5.47	
		Full Development Model (2080)	1	192.00	Y	2.10	5.47	5.47	
		Solution Model (2080)	2	358.00	Y	2.06	5.35	5.35	
Whitegate WwPS	SW84630816_DummyWeir	Short Term Development Model (2030)	24	6,162.00	Y	5.13	13.12	13.12	Cork Harbour
		Long Term Development Model (2055)	28	7,204.00	Y	6.29	16.03	16.03	
		Full Development Model (2080)	32	8,209.00	N	6.29	16.03	16.03	
		Solution Model (2080)	1	1,098.00	Y	6.18	15.70	15.70	

Appendix C – Proposed WW Network Preferred Solution Maps