Annual Environmental Report 2021

Newport

D0325-01

CONTENTS

1 EXECUTIVE SUMMARY AND INTRODUCTION TO THE 2021 AER

- 1.1 ANNUAL STATEMENT OF MEASURES
- 1.2 Treatment Summary
- 1.3 ELV OVERVIEW
- 1.4 LICENSE SPECIFIC REPORT INCLUDED IN AER

2 TREATMENT PLANT PERFORMANCE AND IMPACT SUMMARY

- 2.1 NEWPORT (NORTH TIPPERARY) WWTP TREATED DISCHARGE
 - 2.1.1 INFLUENT SUMMARY NEWPORT (NORTH TIPPERARY) WWTP
 - 2.1.2 EFFLUENT MONITORING SUMMARY NEWPORT (NORTH TIPPERARY) WWTP -
 - 2.1.3 Ambient Monitoring Summary for The Treatment Plant Discharge -
 - 2.1.4 OPERATIONAL REPORTS SUMMARY FOR NEWPORT (NORTH TIPPERARY) WWTP
 - 2.1.5 SLUDGE/OTHER INPUTS TO NEWPORT (NORTH TIPPERARY) WWTP

3 COMPLAINTS AND INCIDENTS

- 3.1 COMPLAINTS SUMMARY
- 3.2 REPORTED INCIDENTS SUMMARY
 - 3.2.1 SUMMARY OF INCIDENTS
 - 3.2.2 SUMMARY OF OVERALL INCIDENTS

4 INFRASTRUCTURAL ASSESSMENT AND PROGRAMME OF IMPROVEMENTS

- 4.1 STORM WATER OVERFLOW IDENTIFICATION AND INSPECTION REPORT
 - 4.1.1 SWO IDENTIFICATION AND INSPECTION SUMMARY REPORT
 - 4.2 REPORT ON PROGRESS MADE AND PROPOSALS BEING DEVELOPED TO MEET THE IMPROVEMENT PROGRAMME REQUIREMENTS
 - 4.2.1 Specified Improvement Programme Summary
 - 4.2.2 IMPROVEMENT PROGRAMME SUMMARY
 - 4.2.3 SEWER INTEGRITY RISK ASSESSMENT

5 LICENCE SPECIFIC REPORTS

5.1 PRIORITY SUBSTANCES ASSESSMENT

6 CERTIFICATION AND SIGN OFF

6.1 SUMMARY OF AER CONTENTS

7 APPENDIX

7.1 Ambient monitoring summary

1 EXECUTIVE SUMMARY AND INTRODUCTION TO THE 2021 AER

This Annual Environmental Report has been prepared for D0325-01, Newport, in Tipperary in accordance with the requirements of the wastewater discharge licence for the agglomeration. Specified reports where relevant are included as an appendix to the AER.

1.1 ANNUAL STATEMENT OF MEASURES

A summary of any improvements undertaken is provided where applicable.

1.2 TREATMENT SUMMARY

The agglomeration is served by a wastewater treatment plant(s)

• Newport (North Tipperary) WWTP with a Plant Capacity PE of 1900, the treatment type is 2 - Secondary treatment

1.3 ELV OVERVIEW

The overall compliance of the final effluent with the Emission Limit Values (ELVs) is shown below. More detailed information on the below ELV's can be found in Section 2.

Discharge Point Reference	Treatment Plant	Discharge Type	Compliance Status	Parameters failing if relevant
TPEFF2800D0325SW001	Newport (North Tipperary) WWTP	Treated	Non-Compliant	Ammonia-Total (as N) mg/l ortho-Phosphate (as P) - unspecified mg/l

1.4 LICENCE SPECIFIC REPORTING

Assessment / Report

There are no Licence Specific Reports included in this AER.

2 TREATMENT PLANT PERFORMANCE AND IMPACT SUMMARY

2.1 NEWPORT (NORTH TIPPERARY) WWTP - TREATED DISCHARGE

2.1.1 INFLUENT MONITORING SUMMARY - NEWPORT (NORTH TIPPERARY) WWTP

A summary of influent monitoring for the treatment plant is presented below. This monitoring is primarily undertaken in order to determine the overall efficiency of the plant in removing pollutants from the raw wastewater.

Parameters	Number of Samples	Annual Max	Annual Mean
Suspended Solids mg/l	12	418	183
Ammonia-Total (as N) mg/l	12	50	26
BOD, 5 days with Inhibition (Carbonaceous BOD) mg/l	12	373	199
COD-Cr mg/l	12	765	374
ortho-Phosphate (as P) - unspecified mg/l	12	5.36	2.82
Total Phosphorus (as P) mg/l	3	6.40	4.12
Hydraulic Capacity	N/A	1131	578

If other inputs in the form of sludge / leachate are added to the WWTP then these are included in Section 2.1.5 if applicable.

Significance of Results:

The annual mean hydraulic loading is less than the peak Treatment Plant Capacity. The annual maximum hydraulic loading is less than the peak Treatment Plant Capacity. Further details on the plant capacity and efficiency can be found under the sectional 'Operational Performance Summary'.

2.1.2 EFFLUENT MONITORING SUMMARY - TPEFF2800D0325SW001

Parameter	WWDL ELV (Schedule A)	ELV with Condition 2 Interpretation included Note 1	Interim % reduction from influent concentration	Number of sample results	Number of exceedances	Number of exceedances with Condition 2 Interpretation included	Annual Mean	Overall Compliance (Pass/Fail)
COD-Cr mg/l	125	250	N/A	12	N/A	N/A	32	Pass
BOD, 5 days with Inhibition (Carbonaceous BOD) mg/l	25	50	N/A	12	N/A	N/A	7.88	Pass
Suspended Solids mg/l	25	62.5	N/A	12	N/A	N/A	8.44	Pass
pH units	9.00	9.00	N/A	12	N/A	N/A	7.32	Pass
Ammonia-Total (as N) mg/l	3.00	3.60	N/A	12	1	1	1.12	Fail
ortho-Phosphate (as P) - unspecified mg/l	1.50	1.80	N/A	12	8	8	2.32	Fail
Total Phosphorus (as P) mg/l	N/A	N/A	N/A	3	N/A	N/A	2.57	
Total Oxidised Nitrogen (as N) mg/l	N/A	N/A	N/A	12	N/A	N/A	20	
Nitrate (as N) mg/l	N/A	N/A	N/A	12	N/A	N/A	19	

Parameter	WWDL ELV (Schedule A)	ELV with Condition 2 Interpretation included Note 1	Interim % reduction from influent concentration	Number of sample results	Number of exceedances	Number of exceedances with Condition 2 Interpretation included	Annual Mean	Overall Compliance (Pass/Fail)
Nitrite (as N) mg/l	N/A	N/A	N/A	12	N/A	N/A	0.161	

Notes:

Cause of Exceedance(s):

WWTP not designed for P removal. Ammonia breach due to plant breakdown.

Significance of Results:

Newport is not compliant with the ELVs set out in the Wastewater Discharge Licence.

2.1.3 AMBIENT MONITORING SUMMARY FOR THE TREATMENT PLANT DISCHARGE TPEFF2800D0325SW001

A summary of monitoring from ambient monitoring points associated with the wastewater discharge is provided in the sections below. For discharges to rivers upstream (U/S) and downstream (D/S) location data is provided. For other ambient points in lakes, coastal or transitional waters, monitoring data from the most appropriate monitoring station is selected.

The table below provides details of ambient monitoring locations and details of any designations as sensitive areas.

Ambient Monitoring Point from WWDL (or as agreed with EPA)	Irish Grid Reference	River Station Code	Bathing Water	Drinking Water	FWPM	Shellfish	WFD Ecological Status
Upstream	172490, 162161	RS25N020250	No	No	No	No	High

^{1 –} This represents the Emission Limit Values after the Interpretation provided for under Condition 2 of the licence is applied

^{2 -} For pH the WWDA specifies a range of pH 6 - 9

Ambient Monitoring Point from WWDL (or as agreed with EPA)	Irish Grid Reference	River Station Code	Bathing Water	Drinking Water	FWPM	Shellfish	WFD Ecological Status
Downstream	170251, 161858	RS25N020330	No	No	No	No	High

The results for ambient results and / or additional monitoring data sets are included in the Appendix 7.1 - Ambient monitoring summary

Significance of Results:

The WWTP discharge was not compliant with the ELV's set in the wastewater discharge licence for the following: Ammonia-Total (as N) mg/l, ortho-Phosphate (as P) - unspecified mg/l.

The ambient monitoring results do not meet the required EQS at the upstream and the downstream monitoring locations. The EQS relates to the Oxygenation and Nutrient Conditions set out in the Surface Water Regulations 2009.

Based on ambient monitoring results a deterioration in Orthophosphate, BOD and Ammonia, concentrations downstream of the effluent discharge is noted.

The discharge from the wastewater treatment plant does not have an observable negative impact on the Water Framework Directive status.

2.1.4 OPERATIONAL PERFORMANCE SUMMARY - NEWPORT (NORTH TIPPERARY) WWTP

2.1.4.1 Treatment Efficiency Report - Newport (North Tipperary) WWTP

Treatment efficiency is based on the removal of key pollutants from the influent wastewater by the treatment plant. In essence the calculation is based on the balance of load coming into the plant versus the load leaving the plant. The efficiency is presented as a percentage removal rate.

A summary presentation of the efficiency of the treatment process including information for all the parameters specified in the licence is included below:

Parameter	Influent mass loading (kg/year)	Effluent mass emission (kg/year)	Efficiency (% reduction of influent load)
ss	40402	1859	95
COD	82316	7004	91
TN	N/A	N/A	N/A

Parameter	Influent mass loading (kg/year)	Effluent mass emission (kg/year)	Efficiency (% reduction of influent load)		
ТР	1109	693	38		
cBOD	43850	1736	96		

Note: The above data is based on sample results for the number of dates reported

2.1.4.2 Treatment Capacity Report Summary - Newport (North Tipperary) WWTP

Treatment capacity is an assessment of the hydraulic (flow) and organic (the amount of pollutants) load a treatment plant is designed to treat versus the current loading of that plant.

Newport (North Tipperary) WWTP				
Peak Hydraulic Capacity (m³/day) - As Constructed	1238			
DWF to the Treatment Plant (m³/day)	413			
Current Hydraulic Loading - annual max (m³/day)	1131			
Average Hydraulic loading to the Treatment Plant (m³/day)				
Organic Capacity (PE) - As Constructed	1900			
Organic Capacity (PE) - Collected Load (peak week)Note1	2500			
Organic Capacity (PE) - Remaining	0			
Will the capacity be exceeded in the next three years? (Yes/No)	Yes			

Nominal design capacities can be based on conservative design principles. In some cases assessment of existing plants has shown organic capacities significantly higher than the nominal design capacity. Accordingly plants that appear to be overloaded when comparing a collected peak load with the nominal design capacity can be fully compliant due to the safety factors in the original design.

2.1.5 SLUDGE / OTHER INPUTS - NEWPORT (NORTH TIPPERARY) WWTP

'Other inputs' to the waste water treatment plant are summarised in table below

Input type	Quantity	Unit	P.E.	% of load to WWTP	Included in Influent Monitoring (Y/N)?	Is there a leachate/sludge acceptance procedure for the WWTP?	Is there a dedicated leachate/sludge acceptance facility for the WWTP? (Y/N)		
There is	There is no Sludge and Other Input data for the Treatment Plant included in the AER.								

3 COMPLAINTS AND INCIDENTS

3.1 COMPLAINTS SUMMARY

A summary of complaints of an environmental nature related to the discharge(s) to water from the WWTP and network is included below.

Number of Complaints	Nature of Complaint	Number Open Complaints	Number Closed Complaints	
There were no relevant environm	ental complaints in 2021.			

3.2 REPORTED INCIDENTS SUMMARY

Environmental incidents that arise in an agglomeration are reported on an on-going basis in accordance with our waste water discharge licences. Where an incident occurs and it is reportable under the licence, it is reported to the Environmental Protection Agency through their Environmental Data Exchange Network, or in some instances by telephone. Some incidents which arise in the agglomeration are recorded by Irish Water but may not be reportable under our licence for example where the incident does not have an impact on environmental performance.

A summary of reported incidents is included below.

3.2.1 SUMMARY OF INCIDENTS

Incident Type	Cause	No. of incident occurrences	Recurring (Y/N)	Closed (Y/N)
Abatement Equipment offline	Plant or equipment breakdown at WWTP	1	No	Yes
Breach of ELV	WWTP not designed for P removal	1	Yes	No
Breach of ELV	Plant or equipment breakdown at WWTP	1	No	Yes

Incident Type	Cause	No. of incident occurrences	Recurring (Y/N)	Closed (Y/N)
Uncontrolled release	Blocked Sewer	1	No	Yes

3.2.2 SUMMARY OF OVERALL INCIDENTS

Question	Answer
Number of Incidents in 2021	4
Number of Incidents reported to the EPA via EDEN in 2021	4
Explanation of any discrepancies between the two numbers above	N/A

4 INFRASTRUCTURAL ASSESSMENTS AND PROGRAMME OF IMPROVEMENTS

4.1 STORM WATER OVERFLOW IDENTIFICATION AND INSPECTION REPORT

A summary of the operation of the storm water overflows and their significance where known is included below:

4.1.1 SWO IDENTIFICATION

WWDL Name / Code for Storm Water Overflow (chamber) where applicable	Irish Grid Ref. (outfall)	Included in Schedule of the WWDL	Significance of the overflow(High / Medium / Low)	Assessed against DoEHLG Criteria	No. of times activated in 2021 (No. of events)	Total volume discharged in 2021 (m3)	Monitoring Status
SW001	171636, 161592	Yes	Low	Meeting	Unknown	Unknown	Not Monitored
SW001	172379, 160722	Yes	Low	Meeting	Unknown	Unknown	Not Monitored
SW003	172345, 161984	Yes	Low	Meeting	Unknown	Unknown	Not Monitored
SW005	171201, 161538	Yes	Low	Not Meeting	Unknown	Unknown	Not Monitored

Any TBC SWO(s) were identified as part of the on-going National SWO programme and will be updated in subsequent AER(s) once the information is confirmed.

SWO Summary		
How much sewage was discharged via SWOs in the agglomeration in the year (m3)?	Unknown	

SWO Summary	
Is each SWO identified as not meeting DoEHLG Guidance included in the Programme of Improvements?	No
The SWO Assessment included the requirements of relevant of WWDL schedules?	Yes
Have the EPA been advised of any additional SWOs / changes to Schedule C3 and A4 under Condition 1.7?	N/A

4.2 REPORT ON PROGRESS MADE AND PROPOSALS BEING DEVELOPED TO MEET THE IMPROVEMENT PROGRAMME REQUIREMENTS.

4.2.1 SPECIFIED IMPROVEMENT PROGRAMME SUMMARY

A wastewater discharge licence may require a number of reports on specific subject areas to be prepared for the agglomeration in question. These reports are submitted to the EPA as part of the Annual Environmental Report. This section provides a list of the various reports required for this agglomeration and a brief summary of their recommendations.

Specified Improvement Programmes (under Schedule A and C of WWDL)	Description	Licence Schedule	Licence Completion Date	Date Expired? (N/NA/Y)	Status of Works	Timeframe for Completing the Work	Comments
D0325-SIP:01	Improvements to meet ELVs as specified in Schedule A	С	31/12/2015	Yes	At Planning Stage	2025	
D0325-SIP:02	Improvements works may be required to increase the organic and hydraulic treatment capacity of the plant to ensure compliance with condition 1.7	С	31/12/2015	Yes	At Planning Stage	2025	

A summary of the status of any other improvements identified by under Condition 5 assessments- is included below.

4.2.2 IMPROVEMENT PROGRAMME SUMMARY

Improvement Identifier	Improvement Description / or any Operational Improvements	Improvement Source	Expected Completion Date	Comments
No additional improver	ments planned at this time.			

4.2.3 SEWER INTEGRITY RISK ASSESSMENT

The utilisation of multiple capital maintenance programmes and the outputs of the workshops with the Local Authority Operations Staff held under the programme can be used to satisfy the requirements of Condition 5 regarding network integrity. Improvement works identified by way of these programmes and workshops will be included in the Improvements Summary Tables 4.2.1 and 4.2.2.

5 LICENCE SPECIFIC REPORTS

A wastewater discharge licence may require a number of reports on specific subject areas to be prepared for the agglomeration in question. These reports are submitted to the EPA as part of the Annual Environmental Report. This section provides a list of the various reports required for this agglomeration and a brief summary of their recommendations.

Licence Specific Report	Required by licence	Year included in AER	Included in this AER
Priority Substances Assessment	Yes	2016	No

6 CERTIFICATION AND SIGN OFF

6.1 SUMMARY OF AER CONTENTS

Parameter	Answer
Does the AER include an Executive Summary?	Yes
Does the AER include an assessment of the performance of the Waste Water Works (i.e. have the results of assessments been interpreted against WWDL requirements and or Environmental Quality Standards)?	Yes
Has a Technical amendment/licence review application been submitted to the Agency by IW?	Yes
List reason e.g. additional SWO identified	Increase in collected loading
Is there a need to request/advise the EPA of any modification to the existing WWDL with respect to condition 4 changes to monitoring location, frequency etc	Yes
List reason e.g. changes to monitoring requirements	Ambient Monitoring Location Changes
Have these processes commenced?	Yes
Are all outstanding reports and assessments from previous AERs included as an appendix to this AER	N/A

I certify that the information given in this Annual Environmental Report is truthful, accurate and complete:

Signed: Date: 13/05/2022

This AER has been produced by Irish Water's Environmental Information System (EIMS) and has been electronically signed off in that system for and on behalf of ,

Katherine Walshe

Acting Head of Environmental Regulation.

7 APPENDIX

Appendix

Appendix 7.1 - Ambient monitoring summary

Entity	Station	Station Reference		Station Northing							
	Upstream @ Newport WWTP	RS25N020290	172490	162161							
	53405 534		Paramete r	Ammonia N	Biological Oxygen Demand	THE RESIDENCE OF THE PARTY OF T	Dissolved Oxygen % Saturation	Ortho-Phosphate P	pH	Temperature	Suspender
	Sample Method	Comments		mg/l	mg/l	mg/I	% O2	mg/l	pH units	Degrees C	mg
4-Feb-2021	Grab	River high and coloured following rain		0.015	2.6			0.026	7.59	7.7	10
Control of the Contro	Grab	-		0.04	2.8	10.2	103.8	0.01	8.04	13.4	2
	Grab	-	-	0.015	2.7	10.02	96.7	0.01	7.89	13.7	2
5-Aug-2021	Grab	i i	3	0.015	1	9.77	102.1	0.028	8.05	16.1	2
18-Nov-2021	Grab	-	<u></u>	0.015	1	10.9	97.5	0.016	. 8	11.2	2

2.02

0.02125

Mean

			Station	Station							
Entity	_	_	Easting	Northing							
	Downstream @										
	Newport										
Newport (Tipperary)	WWTP	RS25N020320	170251	161858			20	42		5	
		***************************************			Biological Oxygen			I			
			Paramete	Ammonia N	Demand	Dissolved Oxygen	Dissolved Oxygen % Saturation	Ortho-Phosphate P	pН	Temperature	Suspended Solids
Sample Date	Sample Method	Comments		mg/l	mg/l	mg/l	% O2	mg/l	pH units	Degrees C	mg/l
		River high and									
		coloured following									
4-Feb-2021	Grab	rain	÷	0.015	2.5			0.022	7.66	7.7	12
17-June-2021	Grab		0.00	0.09	2.7	10.7	111.2	0.01	8.08	12.7	2
8-July-2021	Grab	+	-	0.015	2,4	9.82	95.9	0.02	7.96	14.1	2
5-Aug-2021	Grab	-	340	0.015	2.4	10.3	108.6	0.082	8.27	16.8	2
18-Nov-2021	Grab	-	-	0.015	1	10.84	96.9	0.021	7.94	10.9	2
			Mean	0.03	2.2	10.415	103.15	0.031	7.982	12.44	3

10.2225

100.025

0.018

7.914

12.42

2

		Receiv	Receiving Waters Designation (Yes/No)				Mean (mg/l)			
Ambient Monitoring Point from WWDL (or as agreed with EPA)	Irish National Grid Reference (Easting, Northing)	EPA Feature Coding Tool code	Bathing Water	Drinking Water	FWPM	Shellfish	Current WFD Status	cBOD	o-Phosphate (as P)	Ammonia (as N
Upstream Monitoring Point	172490, 162161	RS25N020290					High	2.020	0.018	0.02
Downstream Monitoring Point	170251, 161858	RS25N020320	No	No	No	No	High	2.200	0.031	0.03
Difference		covacovacovaco	Leon seen	İ	V-1101V-1101V-1	İ.	7 41	0.180	0.013	0.009
EQS								1.300	0.025	0.040
% of EQS								13.846%	52.000%	22.500%